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*Note: Previously said “Summer”. This was from an earlier set 
of slides. 

Hi, I’m James McLaren, Director of Engine Technology at Q-
Games out in Kyoto, Japan. 

So today I’m going to talk a little bit about some of the 
technology that we’ve put in our upcoming PS4 game “The 
Tomorrow Children”. 

I’m mostly going to be talking about the Lighting system, for 
which we implemented a form of realtime global illumination. 

But I’ll also give a few details about our landscape system, 

And I’ll hopefully have time at the end to talk a little bit about 
our use of Asyncronous Compute. 
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So I’m just going to run a trailer for the game just in case any 
of you haven’t seen the madness that we’ve been making.... 
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Attempting to implement Global Illumination seemed like a 
lofty goal,  

but it was necessary for us because of the unique look that we 
were aiming for.  

We certainly hoped the PS4 would have the power to let us 
achieve it, 

But it wasn’t entirely clear at the start what was the best path 
to get there.   

We looked into Light Propagation Volumes, and some Virtual 
Point Light methods,  

But after some research the route that seemed most 
promising to us was 
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This very interesting talk that was given at Siggraph 2011 by Cyril Crassin. 

His work was on a technique he called Voxel Cone Tracing, which was capable 

of producing Global Illumination effects in real time on a high end GPU. 

This worked by voxelizing the scene into what he called a Sparse Voxel 

Octree, injecting lighting information into this structure, 

 and then tracing cones through that from the location of a pixel in world space 

in order to gather the indirect illumination affecting it. 

 

As you can see from the image, this gives a very pleasing result, and it caused 

quite a stir at Siggraph, as it felt like quite a big step forward for realtime GI. 
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So, what is Voxel Cone Tracing? 

 

Well, it’s a technique that shares some similarities with ray 
tracing 
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So, for both techniques we’re trying to obtain a number of 
samples of the incident radiance at a point by shooting out 
primitives, and intersecting them with the scene.  

And if we take enough well distributed samples, then we can 
combine them together to form an estimate for the incident 
lighting at our point, which we could then feed through a 
BRDF that represented the material properties at our point, 
and calculate the exitant lighting. 
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So the key difference between the two approaches is what 
happens when we evaluate the intersection of our primitives 
with the scene. 

With a ray the intersection is at a point,  
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where as with a Cone, it ends up being a an area or perhaps a 
volume, depending on how you are thinking about it.  

The important thing, is that because it’s no longer a point, the 
properties of our estimate change. 
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Firstly, we aren’t necessarily looking in just one location in the 
scene for our intersection anymore,  

we can have multiple partial hits by our cone. 
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And secondly, because of the need to evaluate the scene over 
an area, our scene has to be filterable. 

Also, because we are filtering we are no longer getting an 
exact value, we are getting an average, and so the accuracy 
of our estimate goes down. 
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But on the upside, because we are evaluating an average, the 
noise, that we would typically get from ray tracing, is largely 
absent. 

It was this property about cone tracing that really grabbed my 
attention when I saw Cyril Crassin’s presentation.  

Suddenly we had a technique where we could get a 
reasonable estimate of the irradiance at  point, with a small 
number of samples, and because the scene geometry was 
filtered, we wouldn’t have any noise, and it would be fast. 
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So obviously the challenge is, how do we sample from our 
cone. 

The purple surface area in the picture on the left defining 
where we intersect is not a very easy thing to evaluate. 

So instead, we take a number of volume samples along the 
cone, with each sample returning an estimate of light reflected 
towards to apex of the cone, as well as an estimate of the 
occlusion in that direction. 

It turns out that we can combine these samples with the same 
basic rules we would use for ray marching through a volume. 
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One thing worth noting is that because we are using volume 
samples, we are potentially going to get inaccurate results in 
the case where we have a cone that is partially occluded, as 
we don’t carry any information about the shape of the 
occlusion onto the next sampling step.  

So in this example, we have two partial occlusions of our 
cone, both of them occlude 50% of the light from the sky.  

But as you can see in reality, if we were combine these two, 
we should get 100% occlusion of light.  

Where as our cone trace will actually tell us that we can still 
see 25% of the light, because all we do is just naïvely 
combine their occlusion in the same way we would with alpha 
blending.  

 

This doesn’t tend to be such a big issue in practice, but it is 
worth bearing in mind that cone tracing is only a very rough 
estimate. 
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So now we know what we need to do, accumulate our 
irradiance data as we march along our cone,  

so the next big question is how do we store our scene to 
accommodate that? 

Well, Voxels are the obvious answer, but a naïve voxel 
representation is likely to use a very large amount of memory. 
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Crassin’s original paper solved this problem via the use of a 
Sparse Voxel Octree, which are certainly very compact, 

 

 But we weren’t sure it was the best fit for the GPU. There is 
still lots of walking and pointer chasing in there. 

So we weren’t 100% sure it was going to give us the 
performance we needed. 
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So rather than use a Sparse Voxel Octree, we chose instead to 
use cascades of voxel textures. 
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With texture cascades, we have multiple overlapping textures, 
with each level being the same resolution,  

but with the dimensions of area they cover doubling with each 
successive level. 

This scheme helps reduce the amount of memory we use, and 
also provide a natural LODing,  

And because everything is just a 3D texture lookup, we felt 
that that this is also a much more natural fit for the GPU. 
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So here’s a quick look at what this looks like for us in a debug view on one of 

our test levels. 
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Here’s what’s represented in the first 32x32x32 cascade level. 
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And you can see as I add more cascades 
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You can see that we get something that sort of approximates the original scene 
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Looking from above we can see the concentric pattern of the cascades  

that will be familiar to anyone who’s implemented Clip Maps, or Light 

Propagation Volumes. 
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For every voxel in our cascades, we need to store some 
information about the geometry that’s contained in it.  

You can think of this as being analogous to a G-Buffer, but in 
3D, rather than in 2D. 
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For each attribute that we want to store about our geometry, 
we have a separate 3D texture. 

You can see in the table here, the 4 attributes that we store, 
which are Albedo, Normal, Occupancy and Emission. 

These combine to give us 13 bytes per voxel face. If you’re 
wondering what the “face” part of all this is, don’t worry, I’ll 
get to that in just a minute. 
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Now just Gbuffers aren’t enough, we are also going to need 
space to store the what are the equivalent of our light buffers 
in a deferred algorithm.  

We need a volumetric buffer that stores our direct lighting, our 
first bounce lighting, and also our second bounce lighting.  

Each of these is stored in 11,11,10 floating point format, to 
give us a good trade off of accuracy vs size.   
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So, it turns out that if you want good quality, then actually 
you really want to store information not just per voxel but per 
voxel face. 

This means that for each voxel we are actually storing 6 sets 
of Gbuffer information, and the same for our light buffers. 

What this gets us though is quite important, it allows our 
voxels to be anisotropic. 

Take the multicoloured boxes we have here,  

which each fit in a single voxel.  
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This is how their albedo looks with anisotropic voxels. 

If this was to end up being represented as isotropic voxel, i.e 
with only one albedo, per voxel, 

then the best we could do would be to somehow have pick one 
of the faces for the value of the albedo, or take an average of 
it, and do the same for our other attributes. 
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So our albedo colour would end up looking like this 

Which is obviously not a very accurate representation. 

Worse still, if we did this for our light buffers, then if we shone 
a light on one side of the cube, our buffer for direct lighting 
would end up telling us that we had some light being emitted 
from this voxel, even if we were are trying to determine how it 
looks from the unlit direction. 
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So how do we actually store all of this in memory? 

As we saw earlier, each attribute gets it’s own texture, and the same for our 

light buffers. 

We have 6 cascade levels, each of which is 32^3 voxels, which allows us to 

cover objects a fair way off into the distance. 
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And as I just described, each voxel also needs to store values for each of it’s 6 

faces.  
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And so we end up packing all 6 cube faces for our anisotropic voxels and all 6 

cascade levels into a single 3D texture per attribute. 
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Within each texture we need to tile repeated blocks of 32^3 voxels for each of 

our 6 faces in X. 

And we also tile our blocks in Y for our cascade levels. 

This setup allows us to easily do trilinear interpolation between our voxels,  

but we do have to be careful when we sample to always clamp to the edge of 

our cascades levels to avoid bleeding from other faces or levels.. 
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So now we know what cone tracing is,  

and how we’re roughly going to store our scene,  

lets look at how to use that to get some global illumination 
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We need to start off by voxelizing our scene into our Voxel 
Texture Cascade. 

This gives us a scene representation that we can begin to 
work with. 

When we voxelize we’re essentially building our Volumetric 
Gbuffer. 
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Then we need to inject lighting into our volumetric light 
buffers.  

We actually do this by tracing several cones for each voxel.  

In the simple case where we are just doing one bounce, and 
injecting light from the sky, 

 then you can think of this as just tracing a cone to determine 
sky occlusion in a certain direction. 

As I described before , by looking at the occupancy for each 
sample as we move along the cone, we can get a fairly good 
estimate for how much we can see of the sky in that direction.  

We will do this for all of the levels of our cascade, although we 
do stagger this update so that we only update one level per 
frame. 
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Now that we have filled our direct lighting buffer with 
illumination information,  

we can now trace several cones from the world space position 
of each pixel to get our indirect lighting. 
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So now I’ll take a closer look at some of the details of how we 
will go about 

Generating and updating the data that will be in the cascades. 
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We only update one cascade level per frame for speed,  

but we bias which level is chosen to ensure more frequent updates for the 

higher detail cascade levels nearest to the camera. 

So the closest cascade level is updated every 2 frames, the next level every 4 

frames, and so on.  

This helps to ensure that the lighting closest to the action is updated at a 

reasonable speed.  
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The first thing we need to do when updating our cascade level for this frame is 

to calculate it’s new center if the viewer has moved.. 

This is of course based on the position of the camera. 
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We must then scroll any data we have in our cascade level if we have moved,  

And we have do this for both our volumetric light buffers and gbuffer data.  
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As a consequence of scrolling our data around we will find that 
we don’t have data for certain edges in our current cascade 
level. 

For our irradiance data, we pull this data from the next 
cascade level down to give ourselves  what is effectively a 
mipmapped approximation of the lighting on that edge.   
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If the cascade level has moved then we also have to voxelize any new 

geometry at the edges  

As well as any geometry that has just appeared or been changed. 
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For us, there are two main sources of data for this geometry.  

Firstly, we have our static objects, such a buildings, sign 
posts, that are part of our city that have a traditional 
polygonal representation,  

For these just use a low LOD version of the our normal 
rendering geometry. 
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Secondly, we also have our landscape, which is user 
modifable, but still relatively static. 

This is stored internally in a sort of span list representation, 
that I’ll talk a little bit about later. 
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It’s worth noting that we don’t use dynamic objects such as 
characters and vehicles to populate our Volumetric G-Buffers,  

as they would force us to do a lot of repeated voxelization as 
they move around. 
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So lets say we have an object, how do we go about voxelizing it? 
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Objects are voxelized using the hardware rasterizer by performing a draw call 

for each axis.  

This is not a traditional render however as the z test and back face culling are 

turned off and we don’t actually write any pixels via the ROPS.  

What we do do however is to build up a list of entry and exit points to our 

geometry, along with their associated depth, pixel coordinates, and material 

attributes 
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We can then perform some additional processing of this list, to help us 

determine what should be recorded in each voxel.  

.  

 

50 



We start by dividing up the space we are voxelizing into what 
we call “micro blocks” of 4x4x4 voxels,  

and in a compute shader, we make a pass through the append 
buffer in a thread group for each micro block, pulling out the 
fragments that are in that block 
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For each fragment that falls in the block, we use atomics to 
write to a buffer in LDS that keeps track of which fragment 
has the minimum depth on each voxel face, as well as how 
many fragments fall in that voxel face. 
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Once we have this information we now know which fragments 
are the front most for each voxel face. 
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And then we can read the material attributes for the front most fragments for 

each face,  

and use that in conjunction with the fragment count to determine what we 

should write out into our Volumtric Gbuffer for each voxel. 
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One thing to note is that when we rasterize our objects on 
each axis, we actually set things up so that the dummy render 
target that we use has 16x the final resolution that we need.  

We use this to perform Super Sampling, which helps us to Anti 
Alias our resulting voxelized geometry. 
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Another detail is that we only ever perform voxelization for the 
current cascade level that we are updating. 

And of course if the camera isn’t causing the cascade level to 
move around, then usually we don’t have any work to do.  
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In order to avoid sudden frame spikes due to voxelization 
when a cascade moves, 

we don’t actually voxelize per object but by region instead. 
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We slowly voxelize blocks of voxels in the background into a 
cache that covers an area slightly larger than the cascade 
level. 

These blocks, span an area covering several of the “micro 
blocks” I talked about earlier.  

There is some compression magic that goes on here to avoid 
us using too much memory due to all of this. 

But when our cascade moves, it’s actually this cache we use to 
fill the edges of our cascade level. 

As a result we can amortize the cost of voxelization. 
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Our landscape is stored as a Layered Depth Cube, which is essentially a set of 

span lists in each axis, and is thus very easy to voxelize 

When we move, the landscape must also be voxelized, and 
combined with the contents of our decompressed object 
cache. 

Once combined, they can be resolved down into our 32^3 
cascade level.   
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One thing that we found important for robustness was to ensure that the 

voxelization was solid. 

So as a post step after voxelization we fill spans between surface voxels with 

opaque voxels. 

We also propagate our surface attributes inward to the first subsurface layer of 

voxels to ensure we can’t trace past important information. 
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At the end of our voxelization process we scan for voxels that are on the 

surface of our geometry, and write these out to an RW_Buffer. 

These are the voxels that we will trace from to update the direct and indirect 

lighting for our cascade. 
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So now we have filled our volumetric G-Buffers with a 
representation of the geometry in the scene. 

The next step is for us to use this information to fill our 
volumetric light buffers. 

We do this by tracing cones through our scene representation 
for each surface voxel we have identified for our current 
cascade level. 
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So we need to pick some directions to trace in when we gather 
our direct and indirect lighting.  

We chose to trace in 16 fixed directions that are well 
distributed over the unit sphere.  

There is actually a whole branch of mathematics behind how 
these should be chosen, anyone interested should look up 
Spherical T Designs, but suffice to say, we pick a “good” set of 
directions that are guaranteed to give a nice integration over 
the sphere.  

 

We use the same directions all the way through the pipeline, 
both for cones traced from voxels, and also cones traces for 
pixels.  
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So once we have our geometry represented, we need to inject 
direct lighting into our cascade structure. 

We support 3 types of direct lighting. 

Light from the sky, point lights, and emissive materials.  

For the first two of these, the light is gathered via cone tracing 
in the 16 directions we just described. 
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In order to make injecting lighting from the sky easy, we 
represent our sky lighting as 16 Spherical Radial Basis 
Functions, aligned to the 16 directions that we will cone trace 
in.  

This does have the effect that it makes it difficult for us to 
represent sharp high frequency sun lighting, and it’s 
associated shadowing in our game, but as we had specifically 
made the choice with our games art style to avoid this, it 
wasn’t a major limitation for us.  
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For point lights, we use a geometry shader to inject them into 
a volume texture, which is also cascaded like our other 
buffers, and we can query from this as we perform a cone 
trace in our 16 directions, using the occlusion that we 
accumulate along the way to provide plausible shadowing. 
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Emission is the simplest of the three, and we simply inject the 
values directly into our direct lighting buffer at each voxel 
face. 
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So now that we have injected our direct lighting into our 
volumetric light buffer,  

we can go about using that to generate our bounce lighting,  

Which we do by again tracing cones in each of our 16 
directions,  

but this time, we sample from the direct light buffer as we 
trace along our cones. 
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And of course, once we have the first bounce lighting, we can 
do the same thing again, and trace cones, sampling from that 
to get our second bounce. 
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So with the strategy I’ve just described, we would have to 
perform 3 sets of cone traces for each surface voxel if we want 
to get our direct lighting and 2 bounces of indirect lighting 
stored in our volumetric data structure.  

 

However, it turns out that, because we are always tracing in a 
fixed set of directions, the cones we trace from a surface voxel 
for our direct lighting will sample from the exact same voxels 
as for our indirect lighting, and so we can fold these three 
cone traces down into just one.  
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So I’ll try to describe that with a diagram 

 

If we imagine our update, then we perform a cone trace with 
our volumetric gbuffer and our point light texture, to get our 
direct lighting 
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And then cone trace with that again to get our 1st bounce, and 
then second bound lighting 
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Once we have the direct lighting and our bounce lighting 
results, we can sum them to get our final volumetric lighting. 

But as I said, this requires three sets of cone traces per frame. 
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So we can start to transform this into a single pass solution by 
shifting this so that our calculations are staggered across 
frames   

So we’re doing the same as before, but now we have another 
2 frames of latency 
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Then we can note, that because our volumetric Gbuffer 
doesn’t change that quickly, we can use the gbuffer for the 
current frame when we calculate the 1st Bounce and 2nd 
Bounce texture and we’ll get almost the same result,  
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Now because we have interleaved our calculations, we are still 
always calculating new version of each of the direct lighting, 
and the 1st  and second bounce lighting each frame. 

So we can actually get away with just adding up the versions 
of the each of these values that we are calculating on any 
given frame, and still get something similar to the original 
result, and as an added bonus, the 2 frames latency we had 
on the lighting has now been removed.  
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Finally, if we add a few more arrows to show what’s going 
where, and we look at what we need as input for the last 
frame in our diagram, 

Then you’ll see that everything comes from either our 
volumetric light buffers from the previous frame, or from our 
gbuffer and point light texture for the current frame.     
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And so in this way we can make a single shader that does one 
cone trace pass, but that simultaneously  reads from and 
updates our direct lighting, our bounce lighting, and our result 
texture all in one go. 
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So, with what I’ve described until now, we have two bounces of light at our 

voxel granularity, which is nice, but we would like to have even more. 
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So, we try to fake just a little bit more by looking for places that received more 

second bounce light than first bounce light,  

and surmising that they would probably get more illumination from a third 

bounce. 

We add this extrapolated extra bounce to our final result.   
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Now we’ve managed to fill our volumetric data structure with 
details about the scenes lighting.  

But ultimately we are interested in lighting pixels not voxels, 
so we need to get our data into screen space. 
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For each pixel we want to gather lighting information from the 
sky, from point lights, and also from indirect lighting. 
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We can achieve this by cone tracing through our volumetric 
data structure from the world space position of each pixel. 

Unfortunately if we just naively do this, then we get 32 million 
cone traces per frame to light our pixels at 1080p… that’s just 
a few too many! 

83 



Thankfully, whilst the actual lighting between pixels might 
change considerably, due to normals , materials and the like 

The lighting environment generally does not.  

The best way to think about this is that what we are actually 
doing for each pixel when we do all this cone tracing is 
effectively just build a very low resolution, low frequency 
environment map, and because we don’t have hard shadows, 
this doesn’t change very drastically between pixels, as long as 
we don’t have large depth discontinuities. 
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So this means that we can do all of this work at a much lower 
resolution, say 16th of the size, and intelligently upscale it in a 
geometrically aware way to our actual screen resolution. 
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When we trace in screen space, we have to figure out which 
cascade level we should start our cone trace from. 

You can see in the picture, in which we have coloured the 
cascade levels we start from,  that we are actually 
conservative in how we do that.  

As we have concentric circles rather than concentric squares. 
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We use a distance based function, rather than a strict 
determination of the minimum cascade level we could possibly 
trace from.  

This seems like we are wasting data, but we need to do this in 
order to ensure that we don’t have more detail in some 
directions than others. 
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It’s also worth nothing that we have to smoothly blend 
between which cascade level we start from, 

and that it also helps to add a little bit of noise to our blend 
here, so that its harder for the eye to pick up the transition as 
the cascades move over the landscape. 
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So know we know all the details, of how to calculate everything, how does this 

all look? 

Here is our scene with just direct cone traced illumination. 
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And you can see what starts happening as we add in the indirect lighting. 

Here we have just one bounce. 
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And now two. 
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And three. 

The third bounce BTW comes from our cone trace from our pixels. 
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So, what I’ve describes up to now all of this works,  

but it still doesn’t run at speed that is practical on the PS4,  

certainly not if we want to fit in 30ms and have time left over for anything 

else. 

So we have had to cut a few more corner to get to a workable speed. 
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The first thing we did is note that because our voxels are anisotropic,  

as we trace, we are constantly having to do an interpolation between the values 

of 3 face voxels. 

Which is quite costly in terms of the number of texture lookups. 
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But because we have fixed the directions we will trace, we can actually just 

pre-combine these values for each of our 16 directions. 

And store the whole thing in another texture.  

There is a slight overhead for doing this, but it is relatively cheap, and it 

reduces the number of texture lookups we need for the  

Cone tracing steps by a factor of 3. 
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The second big optimization we make is simply to take advantage of parallax. 

If we trace two cones in the same direction from a similar point in space, 

the voxel data we access becomes increasingly similar as we move towards the 

far end of the cones. 
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So instead of tracing this data repeatedly, we trace this “far” cone data once, 

from the center of each voxel our cascades,  
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And store this in another texture cascade, which we can then trilinearly 

interpolate from in the future, to reconstruct this data. 

Then we only need to trace the “near” part of the cone, and use our texture for 

the “far” part.  

And of course we can tune where the “far” cone trace starts for the best 

balance between quality and speed. 

For us this is set to about a meter or so away for our closest cascade level. 
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Cone tracing is great, but our implementations smallest voxel size is only 

0.4m, so we need to augment this with extra detail computed in screen space. 
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So for this we need some screen space occlusion. 

Note, that I left out the word ambient there,  

We do something similar to Screen-Space Bent cones from GPU Pro 3 

And integrate 2 band SH rather than a single scalar occlusion value. 

This can be easily converted into a visibility cone at each pixel, that we can 

then intersect with the cones from our 16 trace directions 

Keeping this occlusion directional rather than just a single scalar value really 

helps, especially when we deal with specular. 
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So, here is an example scene without screen space occlusion 
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And now with, you can see what a big difference that makes. 
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As I said earlier Characters are not voxelized due to the size of our voxels. 

And the extra overhead it would cause 

But we still want nice soft shadows from them 
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So we use the characters collision volumes, to generate occlusion in a very 

similar way to what was done in The Last of Us. 

Except that we have to do a cone overlap test in each of our 16 cone tracing 

directions, rather than just a single primary direction. 

The result of this is a 16 layer deep screen space texture array which we will 

use in our final combine step to modulate our lighting results. 
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Here you can see the volumes we are using for ｔhe main character. 
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As you can see that if we use these for occlusion,  
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Then we get something that helps the character feel much more rooted in the 

world 
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So that takes care of characters, but capsules are not a very good fit for some 

of the other dynamic things we have in the game, namely vehicles 
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For these we instead build a 3D texture containing 2 bands of  SH coefficients 

that describe a visibility fn which we can then use to intersect with the cones 

from our 16 directions. 

Again, this outputs to the same 16 layer deep texture array as the characters. 
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So here you can see our bus, without any occlusions 
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And now with. 
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So, we also have to deal with lighting transparent objects such as particles. 

But the potential cost of doing 16 cone traces per pixel per particle, are just too 

expensive to really be viable. 
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What we do instead (and this might be getting familiar to you now) is build 

another texture! 

We can cone trace from the center of each voxel in our cascades, and get 

ourselves a texture where for any point in space we can query and get a rough 

approximation of the incoming light in all 16 directions. 

But 16 texture lookups is still way too expensive, so we then encode this 

texture as 2 band SH, which gets us down to just 3 texture lookups. 
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We then tessellate our particles, and sample from this texture per vertex. 

We also have the particles fill a dynamic occlusion texture, which is fed back 

into the cone tracing,  
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So here you can see some smoke without occlusion 
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And you can see how if I turn on the occluson 

it allows the smoke to have a much more of a volumetric feel 

And a sense of presence.  
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The nice thing about having this SH texture is that we can use it for other 

things. 

Typically Subsurface scattering is a difficult thing to simulate in realtime. 

We need to simulate light entering an object at multiple different points, and 

bouncing around inside the material before exiting at the point seen by the 

viewer. 
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One possible approach that has been tried is to blur the lighting information in 

either texture space, or in a geometry aware way in screen space. 
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This works to some degree, but doesn’t help us that much with lights that are 

behind the object. 
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So we have some chance of getting some good results for the red ray in our 

diagram, but not the green one. 
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Thankfully the SH texture we built for particles gives us another way to tackle 

this problem. 

The texture we have build is effectively a light field for the scene that we can 

sample at any point in space, 

And can quickly give us the irradiance at any point that we’re interested in. 

Also, going up the cascade levels gives us the information about the incident 

lighting over a wider and wider region of space. 

So we can simply take a weighted average of the irradiance from different 

cascade levels, and use that to gather light that doesn’t directly hit our 

viewpoint. 

In our implementation we sample over the whole sphere, effectively just 

taking the 1st SH band, to accumulate this lighting, which we call the “static 

SS” shading. 
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We can also give a directional effect by ray marching through the object away 

from the viewer, sampling from different cascade levels as we go, gathering 

light using a projected SH cone in the direction of the ray march. 

This we call our “directional SS” term. 

To get a rich range of material looks, we interpolate between the normal 

diffuse lighting we get from our cone tracing, and these two sub surface 

lighting results. 

We also add a parameter we call “frosting”, which uses a screen space local 

thickness parameter we calculate along with our SSDO to modulate the albedo 

of the material to help accentuate the look. 

 

//But in order to take as few samples as possible we only take one raymarch 

step, and take multiple samples from our cascade at this position,  

//Using progressively wider SH cones as we ascend our cascade levels.. 
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So here you can see some mountains that are light with our vanilla cone trace 

lighting. 
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And you can see how we can turn on sub surface scattering and give these 

mountains a nice semi translucent waxy appearance. 
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And then we can add the frosting effect to accentuate the thin regions,  

and we start to have something that looks quite believable. 
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If we take a look at this same material at night 
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We can see more clearly how this sub surface sampling scheme allows light to 

bleed through the landscape 
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The simplified SH texture, is also very useful for other effects, like reflections 
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It’s very fast to build a Signed Distance Field for our cascades with Jump 

Flooding, even though they are 3D. 

 

129 



We generate one for our landscape and objects, and one for our lights. 

Once we have these they can be used to accelerate a ray march, through our 

voxel data. 
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We can then sample from our SH cascade texture when we get close to a 

surface or a light, and accumulate the results. 
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You can see from my picture here that this gives us a very course view of the 

world, but it’s good enough for glossy specular reflections 

And has the advantage that we can reflect objects even when they are off 

screen. 
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So in this scene with our burning town hall. We can see the 
reflection of the fire on the floor, and if we look down… 
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You can see that this still give us a nice, relatively sharp image of our 

surroundings,  

Notice how we can see the fire and the hole in the roof,  
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And you can see all the detail we lose if I turn the effect off and use something 

simpler 
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And of course, we can also extend this approach to allow us to have objects 

that appear to exhibit glossy refraction. 

Like these monuments. 
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So that pretty much wraps things up in terms of what I’m 
going to describe about our games lighting.  

But of course that’s only half of the story. Our game is also 
heavily reliant on the flexible landscape system that we’ve 
built, 

And so I’ll go briefly into a few details of that, so that you can 
get an idea of how we were able to achieve it. 
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So, when we started out we had some pretty crazy concept 
renders to work from. 
This is what we got when we asked our artists to show us the 
terrain features they would like to support. 
They made all of this in zbrush. 
And you can see from all the tunnels and holes that we had no 
real hope of being able to achieve this with height fields and 
displacement. 
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On top of this, it soon became clear that in order to support 
various gameplay features, the landscape would need to be 
dynamic, supporting both creation. 
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And also destruction, via some form of Boolean CSG 
operations. 
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So we found ourselves looking around for a data structure 
that would be appropriate for our needs. 

It would need to support booleans, allow us to perform ray 
casts and handle collisions. 

It also had to allow us to run pathfinding queries, as well as 
easily generate polygons from it on demand. 

On top of this, it also had to be integrate well with the Global 
Illumination system that we were planning, and be queriable 
from the GPU. 

We evaluated several options for how would could do all this, 
including a brief flirtation with distance fields, which have the 
potential to be very flexible for this kind of thing 

But what we eventually settled on was what’s called a Layered 
Depth Cube 

 

141 



So in a Layered Depth Cube, we shoot rays down the center of 
the cells of 3 grids, one aligned to each axis,  

and store a sorted list of all the points of intersection along 
with their attributes and whether we are entering or exiting 
our geometry. 
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So you have something like this , for this simple duck scene. 

Here you can see the starting points of the rays that we will 
trace. 
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And here we see the spans that we extract from the duck on the 
along the x and y axis, 
And the intersection point on each axis for this more complex scene 
below. 
As the structure is so simple and regular, it very easy to use to 
perform CSG operations on it. 
We do have some extra levels of hierarchy to our data structure that 
we use to help keep things performant, 
But I unfortunately I don’t have the time to go into those today. 



So how do we take the LDC and turn it into something 
renderable? 

We did look at various splatting based techniques, but didn’t 
get very far with them,  

and for most of the project we had settled, somewhat uneasily 
on marching cubes. 
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But there were some major issues with the output. 

It destroyed sharp features, created results that seemed to 
vary wildly with the orientation of the input mesh,  

We also have a nagging feeling that we should be able to 
make some use of the normal vectors that we had stored at 
each LDC point, which marching cubes largely threw away. 
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So here you can see how our output looked with Marching 
Cubes. 
The blobs at the front are cubes added via booleans. 
There was a tentative form of material blending going on, 
which is the yellow. 
Naturally, we didn’t really feel that this was good enough. 
And so we decided to experiment with a technique called Dual 
Contouring. 
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Which as you can see gives a much better result and takes 
good advantage of point and normal data present in the LDC. 
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So with this means of polygonization, Edges stay sharp, and 
cubes stay mostly as cubes. 

In general, as long as you have enough resolution, this does a 
much better job of producing meshes that are faithful to the 
original polygonal input. 
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And it enables geometrically complex scenes like this one.. 
 
This is test scene that was used to debug the character 
controller. 
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So I’ll try to give a brief description of how dual contouring 
works. 

In the picture we have a our landscape, and a cube or voxel 
within it that we wish to polygonize. 
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Each cube collects at most 12 planes on its edges  

The yellow point is the output DC vertex of which this is only 1 
per DC cube  

This point is generated by minimizing the distance to all the 
planes. 

 

152 



Each of the planes also have a material id that we must 
propagate to our polygonized vertex data 
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So the Edges of the DC cube are actually aligned with the rays 
and point intersection lists that we generate in the LDC,  

Because of this we can easily walk this structure and pull out 
intersection point that our inside the DC cube we are 
interested in, 

And use them to generate our input planes. 

hopefully be able to make this out in the diagram above. 
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Now, unlike marching cube that polygonizes all voxels 
independently, 
dual contouring considers voxels in groups of 2x2, for each 
axis. 
And creates a quad connecting the four minimized points from 
each of the 4 cubes, assuming that they exist.   
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So here you can see the results of all this. 
This debug view shows the dual contouring quad colored by 
the axis they “come from”, 
 
The surface here is smooth although this debug view does 
make it look like otherwise. 
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So Dual Contouring is much better than marching cubes, but 
it’s not without it’s issues. 
The main problem is that at the core of dual contouring lies an 
annoying optimization problem that is not very GPU friendly at 
all. 
 
We use the more intuitive iterative method described in the 
paper “Efficient and High Quality Contouring of Isosurfaces on 
Uniform Grids” which is trivial to implement. 
 
The only draw back is that it seems to make some sharp 
edges a little bit wobbly, 
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Hopefully you can see the issue in this picture. 

It’s not perfect, but in practice this has not been a big deal for 
us, and we’ve been able to minimize it’s impact by tweaking 
the number of iterations and forces used in the iteration 
process. 
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So Dual Contouring was definitely a step up,  

but converting geometry to the LDC loses us too much 

resolution in some instances where we want fine features. 

So we’ve been experimenting with what we call a “beautifier” 

pass 

 

This beautifier hack was inspired by a voronoi rasterization 

paper “Voronoi Rasterization of Sparse Point Sets” 
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The method described in that paper didn’t quite cut it for us, 

but inspired us to simply redraw the original polygonal parts 

on top and select source or destination pixel based on a depth 

threshold so that we could get greater detail in our normals 

and colours. 

This turned out to be relatively fast, and even works when we 

dig. 

It does however suffer from a few ghosting artifacts if you 

recreate different geometry that is close to what was originally 

there. 

  

 

160 



So here you can see a scene with some of the problems that 
the beautifier is trying to solve. 
Hopefully you can see that some edges don’t come out so well 
on the woman’s face. 
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And now if we turn the beautifier on then you can see how 
much cleaner things get. 
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So, one thing I would like to mention before I finish is about our use of Async 

Compute. 
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We’ve used it very heavily throughout the project, and most of our Screen 

Space (or Voxel Space) work is in compute shaders, 

with large amounts of that running on 3 async compute queues that we have 

set up in addition to our graphics context. 

On a heavy scene we get back around 5ms on a 33ms frame from using Async 

Compute. 
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here is a RTTV capture of the same, fairly heavy scene.  

On the top we’re using just the graphics pipe. 

On the bottom we’re using Async Compute. 

As you can see on the bottom, everything is a lot more overlapped, and we 

take about 5 or 6ms less. 

This is with exactly the same shaders, doing exactly the same work. 
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These 3 compute queues are filled at the same time we fill our 
graphics context , and kicked along with that work at the start 
of the frame. 
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We have an interface setup where our graphics context also 
keeps track of the contexts for the compute queues, so our 
code, frequently asks for one of the 3 compute contexts, and 
fills commands in there instead of the graphics context.  
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We have some utility functions to enable easy synchronization 
between the queues and the main context, as well as a 
fallback mode that forces everything to run in serial, which is 
particularly helpful when you are tying to look at the 
fundamental performance of a particular shader. 
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One thing we discovered during the course of all this was that 
it’s very important to tune the number of wavefronts that each 
queue, as well as the graphics context, can have in flight,  

so that you get a nice mix of work on the GPU.  
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In general we’ve found that we got the best balance if we 
toned down the number of wavefronts assigned to bandwidth 
heavy work, so the latency of texture fetches could be hidden 
behind useful ALU ops from a shader running on another pipe. 

Anyway, I’d really encourage anyone working on the PS4 to 
take a look at async compute, if you haven’t done so already 

It’s a very big win. 
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That’s all I have. Thankyou very much for listening, and I’ve 
hopefully got some time to take any questions that you have. 
I’ll bring up my good friend Jaymin Kessler to help out with 
the questions  in case there is anything that he can field 
better than me. 

If you can please speak into the mikes when asking the 
question and state your name and afflitiation when you do so. 

And also don’t forget to fill in the online survery about this 
session that should have been sent to you while you were 
here. 
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Just a few quick words before I wrap up about how expensive this all is. 

It’s generally taking us on the order of about 3ms a frame to update our 

cascades, slightly more if we have to voxelize. 

Our screen space cone tracing takes somewhere on the order of 3ms. 

3.5 ms for the specular ray march,  

and 2.5ms to do our final upscale and combine pass, that takes all the various 

elements, including SSDO and occlusion, and spits out a shaded pixel. 

And of course, as you could probably guess from my repeated mention of the 

word “texture” we use a rather large amount of memory for textures,  

currently somewhere north of 600mb. 
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So just to give you an idea of how pipelined everything has 
become for us. Here’s a quick overview of what happens when 
in our frame. 

As you can see we have lots of post effect work overlapped 
with our Gbuffer fill pass. This really helps us to mop up all the 
holes that we usually have when vertex shader work 
dominates, and there wouldn’t usually be enough wavefronts 
to fill the GPU. 

We flip immediately after this, and then we move on to 
updating the Voxel GI. This has been left on the graphics pipe 
because we need fragment and vertex shaders for 
voxelization. 

In parallel with this, we calculate some tile lists for from the 
info we have in our Gbuffers, as well as doing motion blur and 
our occlusion calculations. 

We have a second Gbuffer pass that we use for our anisotropic 
reflections, and we do this in parallel with most of our backend 
Screen space cone tracing and reflection work. 

And then we finish off with the transparency pass, which we 
currently don’t have that much that we can overlap with, and  
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our video decoding and UI rendering, which we manage to overlap 
with some more motion blur work. 
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There are a few issues when using dual contouring in our fixed 0.2 
“voxel size” setup. 
 
First is that LDC might enable an arbitrary amount of surface planes 
along DC cube edges. 
 
We have to pick at most one per edge so we have at most 12 
surface planes per DC cube (don’t really want to do anything more 
complicated than that!) 
 
Secondly those planes might have different material IDs and that 
results in very staircase like transition. 
 
For DC vertex that were calculated from set of surface planes with 
different materials, we “relax” them in an elastic net fashion to 
make the material transition boundary more pleasing to the eye.  



So here you can see how our material transitions look if we 
don’t do this relaxation step. 

As you can see the grass/rock transition look kind of horrible 
and blocky 
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But after elastic net relaxations of DC vertices, the material 
transition look a lot easier on the eye. 
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