Gfogit! ?QO] /|

Cascaded Voxel Cone \“
in The Tomorrow Children

kyEO— FILRLUTEALT-
ARy —R Rt -a—V N —RSA TV T ElFIZDLNT

James MclLaren ‘!
A

Q-Games Ltd. O-Games

VWVNO o

* Director of Engine Technology @ Q-Games.
* 19 years in the industry.
* PS3 OS Graphics

X1 — T —LADID T /A TALYE—
“19F D77 — LA FEIEER

-PlayStation3 OST 374V RX%0, 421754 H% ’!
B 5 £

O-Games
2014/09/03 2
for it!

CAITBIF D1 —LREDILFET . RIFAAXRENDLEEFRT 1T EL, — KM
FEDTLESHVDBENAGEVDTHMFOESHSANBREDHRBAZLET

o

Before I start Id just like to say thanks for inviting me to give a talk at CEDEC.
For those of you who don’t know me,

Hi, I’'m James McLaren, the Director of Engine Technology at Q-Games, out in
Kyoto, Japan.

I’ve been doing this whole game dev gig for about 19 years now

And my main claim to fame is that | was lucky enough to be in the right place at the
right time to

End up being part of the small 3 man team from Q that worked with Sony on the OS
graphics and visualizers on the PS3.

R IZCEDECTEIAIZHEEENTETHLIZREBILET,
HEICBEENZWN-LET,

I —LR I95—LUTY, RBIA T4 REHEZ HQ-GamesTTH/AY
—IVOZTTALYA—ELTEILTLET,

CNETIZIOFEMYT —LRER TIN5 ELTEFELE,
RERMGERICIE. QDT /A —F—LQBADIMNRELGF—LTY) TFEMLT

1= . PS3MOSHT S T4HRXES A T7SAHNDTASSLTY,

’7'—.Al~l/f7—’&fiﬂ = =0y

Go. o000 3
yo,, | 2014/09/0

So hopefully everyone here has seen our game, but in case you haven’t here is a our
trailer to give you a hint of what we’ve been making.

Go.

2014/09/03 4

When | first joined the project in early 2012, there was already a good deal of
concept art created for the game, showing this very soft look.

IMZDOTADTIMIAST=DIF2012F D ETY . T TITELMNSATaVY
TRESNF-aVETRT7—rAHYELT=,

Ge.

2014/09/03 5

The art team was producing all of this with Octane Render, a
GPU raytracer

And it became clear very quickly that going for a normal
deferred plus shadows rendering solution was not going to cut it

Especially as the world was dynamic.

7 —hF—LdOctane Render& LN DGPUL A L —H —&{# -5
TWLELT=,
BEDOUYREYPTI7—RLUAYU G EWNST7TO0—FIES
EEHLE-WOWEDATILIZEY TNV GEWWEHIBTLEL =,
BAFIVIREENSCF, LEEO7T7O—FIEFEYTITL
1=

BETo T i 3 \
GO 2014/09/03 6
for it!

Thankfully, the previous year there had been a really nice talk at Siggraph by Cyril
Crassin about using Voxel Cone Tracing for Indirect Lighting.

Which seemed like it might be able to help us achieve this soft diffuse look.

FZWN HIDEDY—F57Toa 959y r ORI a—2 N —REFERALT-
BIERBBIZDODLVTORWEAHYELT =,
- EBLEWVWYINSATAUTDREBIZINIXEZSEASERZT-,

GO 2014/09/03
for it!

And later that year we got some positive reinforcement from Epics elemental demo
that perhaps this was practical for next gen.

ZNDE.EpicDILAVAITENSERI LI A—2FA T4 T DRI HETE
FEHESEVSEBIBLERONT=,

BRMIZIZASTOVERAD,

G,.Qm

Voxelize the geometry to
build Sparse Voxel
Octree.

Sparse Voxel Octree®
FBETH=HIZ, DA A
KN)ZRIESA4 XT3

2014/09/03 8

So, how does Voxel Cone Tracing work?
I’ll just run through it quickly for anyone who isn’t familiar with the idea

In the original paper they start by voxelizing their scene into a Sparse Voxel Octree

RO A—Db—2 0TI EALBEDIEON 2?2 RIEILDZEEFHSENAD
T=OICEGRBAZLET,

FVOFHILBIXIZENINTWS, BFEDREI—MEIRIESAXELEEWN—0%
SVOIZANSZETT

RO aA—2 —RDERBA RAIZFES=AERLIFERLZECAH =YY
_éﬁawéb&bf:o

YoxeheorTeNracing @i

Gf.,?m

Voxelize the geometry to build Sparse
Voxel Octree.

Inject Irradiance.

\\
Biss
SVOFEETAHEOIZ. OAAN)ZRIESAXT ‘ \]
%
EELDORSHEREMZD | \
L \

2014/09/03 9

Then Injecting Irradiance values into the SVO.
Usually using something like Reflective Shadow Maps.

SVONKEEEAVTINT B, BREIERFYRITYTDESLGEDOEFA,
FAMNOY—TI—RI[ZEDEIBAIZIR—aV B EBEIEEETS

HETE— BT 5T RN TOEREMBILL =80 KEE TR
Octreel IR ERZRATIINEILTHEBZLICHERT S

YOxEINCorENraCinE =

* Voxelize the geometry to build Sparse
Voxel Octree.

* Inject Irradiance.
* Filter the Irradiance up the SVO.

L

—d

SVOZBET H-OIZ. OFAM)ERIES4X -
ER) -

EELORGIEREMZS ‘
SVOREZEITAINZIVT TS n

——

GO 2014/09/03 10
for it!

After injection they filter the irradiance up the octree, to get themselves mipmapped
versions of the Irradiance data.

BoDT77O—F(F, REBEATYNIFRIT. F—IV)—DXEDIVTTY
T&k%,

10

* Voxelize the geometry to build Sparse
Voxel Octree.

* Inject Irradiance.
* Filter the Irradiance up the SVO.
* Trace cones per pixel through the SVO.

« SVOZEBETH-OIC. D ANIERIEFTA4X
EES

. EEXORSHEREZMZS
« SVOREBZIAINARILTT S
¢« SVOEFBLTEYEILIEIZO—URL—RET S

Diffuse cones

& 2014/09/03 11
for it! S

After which they trace a set of cones through the SVO per pixel.

BaMbBkta B =AM, BYDA Tz HREEDISIZBLT DN EE B8,
EotILZEIZSVOETITS,

11

Trace cones per pixel through the SVO.

Voxelize the geometry to build Sparse
Voxel Octree. 4

Inject Irradiance.

Filter the Irradiance up the SVO. Ray cone
footprint

Accumulate Irradiance.

SVOZHEET 51012, DX AN ERIES1XT B
BMETREZMA S

SVOREZETAIRITT D samples B
SVOFBELTCE LI EIZa—2bL—RET D Sparse MipMap pyramid

BEELORSIEREEE TS - Voxel-Based cone of pre-integrated values
\ (stored in the octree))

Quadrilinearly
interpolated

2014/09/03 12

And take quadilinear samples at ever increasing levels up the SVO as they trace
along the cone to accumulate the Irradiance for the pixel

Explain quadrilinear.

Voxel Cone TracinglZ&> T T DR NS RE L= THRLEINZA T IMEIFEL
T,

AT DELRTIEConeDFEFEZFRRIZRKELLTLA, FNIZIELTET
OctreeMEREE EITTUL,

bilinearl& 2D TextureMinterpolation
trilinear -> 3D Texture
quadriliniear -> 4D (interpolating between two trilinear interpolations)

3D texture A Mtrilinear sample + 3D texture B Mtrilinear sampleZinterpolationd %
Z&ETY,

12

First experiment on DX11 & early PS4 SDK
Worked but quite slow (30+ms)

Finally returned to utterly rotten code 1 year later.
Decided to K.I.S.S. for 2"d attempt

Just use a 3D texture!

DX11 & #IHAD PS4 SDK THEREF R+
LAV IEE (TELN(30+ms)
—FERICIIEOYITGESENI—FIZEo1=
TOREDIF T INGEREEFESLICLE

3D textureZ{EH S !

2014/09/03 13

So,
To cut a long story short.

I did some prototyping and implemented something similar to what the paper did in
early 2011

Got something working, on an early PS4 SDK

But then got diverted to take care of a whole load of other engine work that needed to
happen

And when | finally got a chunk of time to look at the lighting again a year later

It didn’t run anymore, and I was scared about sinking time into reviving it, especially
as it hadn’t been that fast in the first place

I was always a little unsure how hiddeous walking the octree was going to be
performance-wise on final hardware

So for my second attempt | decided to go with something simpler
And just get rid of the octree entirely and use a 3D texture instead.
No complicated traversal, simple!

FAIFZPSAD BEIDSDKD LT DOADSVOHEEL T,

FLT20LEICTRMNDFER A= ZTHDIXIEIDIEEMNASTLEDTSVO
DT AREIEH TV ECALFRICITENIEIEN MGG O TV,

13

A= V) =TI\ TA—T A ZEHAIENCEZTREL T BDL VT IVEAE
FEATE, TNDDTIVRFYEESIZEEoT=,
A=V —DT—RINREET (2, —DD3DIL AU MELTERIELT=.

13

6 Cascades of 323 voxels.

Anisotropic Voxels (6 facing directions)

Packed into a single 3D texture for each attribute ((6*32)x(6*32)x32).
Trace in 16 directions (spherical t-design)

2-3 Bounce Diffuse Indirect Lighting

Also handles Direct Lighting.

We don’t use any shadow maps.

6MHRT—RERMBDRIEIL

EAMRIEIL (6EmAR)

BERMEZE ((6%32) x (6*32)x32) DE—DIDTVRAF¥IZFEHRAL
16 AM DL —R (BRIKTRZAR)

2-3BI M /™9 A4k B £ R BA

EiEfnnE

xRy ERLGL

2014/09/03 14

Obviously just a single 3D texture would never be large enough cover our scene, and
fit in memory

So we extended this to use cascades.

We kept the anisotropic voxels from the origin paper, as this proved to be quite
important for getting good results

And so we ended up pack all 6 faces and 6 cascades into a single 3D texture per
attribute

We trace in 16 fixed directions , in a similar way to how Epic traced 9 directions for
the Elemental demo

And this gets us 2 to 3 bounces of Indirect lighting
As well as our direct illumination

BE—M3DTIVRF Y TIHbDI—UICRBBELGY A XENN—LI=HE . AE)IC
IRFEDHKRESTRELESD,

RTHATDHRT —FEERT SO oZERRLT=,

COEAMRIEIVFFEICKREGLEDEIASNATOET TNFRVVERHL
HA=6HTI,

B EICE—M3DTIVARAFvIZ6HEECFEBEEHIAAT,

EPICHAIL AVZIITETIARIZCNL—ALT=EIIZ, 16D EEARIZNL—RE
I 5,

14

23N ADREERAZIFS. REKICEERAZEFS

14

& 2014/09/03 15
forit! [s o ——

So, for anyone, who doesn’t know what I mean by cascades.

Here’s a quick look at a debug view on this test level.

CCTTN\YIRTREFSTHRT—FEERELET,

15

G,.,?m

0O

2014/0

/03

C

Here’s what’s represented in the first 32x32x32 cascade level.

32x32x32L NIV TREFEESTLSEHDTY,

16

Go.

2014/09/03

And and as we add more and more cascades

BICTHR7—FEEMT S

17

G,.Qm

2014/09/03

18

And you can see as | add more cascades

HIEZTWADARZSHTLED

18

Gf.,?m

2014/09/03

19

You can see that we get something that sort of approximates the original scene

TDI—UMIFAPYRZATEELE

19

2014/09/03 20

Looking from above we can see the concentric pattern of the cascades

that will be familiar to anyone who’s implemented Clip Maps, or Light Propagation
Volumes.

ENSRBEDRT—FHBRIDEIRIZE-TLNS,
NI Ty TOSATaNTF =23 R 2a— LI ETHMONTLVET,

20

@hl i

Cascades and faces all packed into
a single texture per attribute.

Attribute textures for albedo,

normal, occlusion and emission.
32

WA —REAIETTARATTZRIELA—RTE
SOV T WTFHORF—IZlEoTLND
TRJE 2a—bTFORFY—IETILAR, %
8. AIIL—oar, IS aviziEbh
T3

2014/09/03 21

A quick word about how we store our textures.
We pack everything into a single 3D texture per attribute.

We need repeated blocks of 323 texels for each face, as our voxels are ansiotropic,
and we tile these in X.

We also need to tile them in Y for our cascade levels.
This setup allows us to easily do trilinear interpolation between our voxels,

but we do have to be careful when we sample to always clamp to the edge of our
cascades to avoid bleeding from other faces or cascades.

TORF e ~DIEF %

BHZE(TILRRER. AVIL—30 T2y avE) I23DTIRFYIZTART
FEHRAD,

E-BDRIEILIEZERAELZDO T, FED=HIZ323TIRI/ILOTOYI%EEYIR
TENDETL-,

ZLTINLXIZAMILT B, =L ART—FL AL DI=HIZCOTOYIEY TS
ANTHELVEELGO>TVET,

COOYADENMF T DRI EILDOREICSA) =T DffsEEH oL EIC
EHTEMNTEFT,

LAURNERTB10IChRR Y —RDiENDEEES HE5ISEBLATR
BRDHEL,

21

G,,,q,,,

1.
2.

e Algorithm split into two phases:
1.
2.

Internal update of cascades
Screen space cone trace.

7ILO) X LlF2D:

hRr—kDREREF
RO =V AR—=ZTOHIA—VF—X

2014/09/03 22

So our implementation is split into two main parts.

In the first we update our internal voxel data structures, voxelizing anything new that
comes into view, and injecting and bouncing light.

In the second phase we trace cones in screen space to get local irradiance information
which will then be used to drive our per pixel lighting.

EI22DODRENHYFES
"RERIEILBEEZEH. RENONTEELEMELZTS.

BRI EDSATAVTD=DIZ. EVRILODRAYDRET —E2EEY . XD
— 2 AR—ZXTCaA— M —RETS,

22

Go.

We only voxelize/update one level of the cascade per frame.

Use simple incrementing counter and find the lowest set bit.

CountTrailingZeroes (((count++)) &~ ((1<<(kVoxelCubeGILevel
g=L))=1))

Each cascade updated twice as frequently as the next.

—LARILDRIESARITIvTT—reBIL—LITS
BMEshO 3% ERALT. & T REYrEYRERDITS
BHRT—FRIX BEIZ2EEHIT S

2014/09/03 23

We made the decision early on to only update one cascade level per frame.

This works well because indirect lighting doesn’t need to be updated at a particularly
high frequency for users to find it convincing.

A simple way to implement this, would be to just cycle through our cascade levels,

But this means our nearest cascade would only be updated every 6 frames, which is a
bit too slow.

So instead we have an incrementing counter, that we mask off, and count the number
of trailing zeros on.

This now gets us a situation where our closest cascade is updated every 2 frames, and
our next closest every 4, and so on.

Which perceptually is a much better balance.

19L—L&HEY. 1HR7T—FULOMEFHLGWKIITL =z, TNIEFAFED R NERET
5*&)1':0

A—H—ORETIIZNEEBHETHELEEH T ILEILN, ChIFSF
HRELTULVETY,

OUTNWEBREERRIFIART—RFULRILTHAIILT B E, LALEFYDHRS
—KRE7YITT—rTBDIZ6TIL—LRET, DLELY,

ToAV—DEEN—FEVRRN—BFRELOT, TnEBELT. 27—
L EICRBIAEVLDETYITT—IT %,

23

ART—FR1E2T7L— L AR —R21F4TL— L hDAS—R31E8TL— Lkl
=T CNLIXRE=RECIZBULWVASUR([ZHESTLVET,

23

Go.

Calculate new cascade center. © HLLWART—FEL5—%5ET D
: « BELTWIGE. ART—FT—5%X
Scroll;ascade data if we have BO— ¥ 2
moved. + BEEHLT. EBSWTLREREOY
Voxelize to update any geometry FTANIERIESAXLEFHT S
that has changed, if necessary. o H—TzARX1DORIEILIE. RIOESA
“ » ; g AR S
Surface” voxels are identified T .
diiFi TR © SMHDORTEILNBRAZ—RL, =Tk
Hring yoxellzation. L—X(16AM) ZEBLTHRr—F %
We then propagate illumination WL THREAZEEIT D
through the cascade via cone
tracing (in 16 directions), starting
at these voxels.
2014/09/03 24

The first thing we need to do is calculate the new center of our cascade if the viewer
has moved.

It’s important to note that in order to make mip-mapping easy later on, we have to
lock this to a grid that is half the resolution of our cascade.

We must then scroll any data we have in our cascade level if we have moved,

And voxelize any new geometry at the edges of our cascade, or geometry for objects
that have just appeared or been changed.

At the end of our voxelization process we scan for voxels that are on the surface of
our geometry, and write these our to an RW_Buffer.

These are the voxels that we will trace from to update the direct and bounce lighting
for our cascade.

BEABILBE. FTHRY—FROFHLLFDLESFELET,
RELHRAVMEI HETIVTIVTHEEEFEIZTBESIT. F)YRIZZSy Ty
TEBETELLEWNELRSEELY,

FDTIVIRIEHRT—RDREBEDFEHTI,

ZELTEWVIGE . WRT—RZHAHIT R TOT—H2ERIA—)LSELRNENTR
LY

Tl B[ENYNRNIZEN DA T O OO DOF AN & ART—F
DIFIZHET R TD A A ERIE5A XLEITNIEIESIEN,

24

RO TOERDRREIZ. 22D EELET . FTRILILIZHEZ DA A D
Y—JD1—RXEAF v LTRW BufferlZLyhvEd,

AR —RD=OIZ. FORIEILIZDWNTIEZDRIEZILER — AL EESL
CREERERDATYIDE=OIZT7IvTT—rT 5,

24

\OXel17atic

Only voxelize static geometry.

Voxelize at each cascade at
128x128x32 for each axis to get 16x
super sampling.

Landscape uses a LDC, and is thus
trivial to voxelize.

Objects use a block based cache.

B AN DHERIESAXTH
128x128x32MHART—K &, FNEFNDET
16XDRA—/I\—H T 5%/ DI=HIZRY
54X
2 IELDCEFE->TLNDD TR A4 XL
BTY
AT HMIETavIR—ZADF vy ok
FE-oTLVD

2014/09/03 25

Because voxelization can be slow, we only voxelize static objects.
Characters and dynamic objects are dealt with separately, which | will describe later.

Our voxels, even at the finest level tend to be quite large, and so some degree of
antialiasing when voxelizing is very important.

For this purpose we voxelize into 128x128x32 textures for each axis, before applying
a final resolve, to give us 16x AA.

Our landscape is stored as a Layered Depth Cube, which is essentially a set of span
lists in each axis, and is thus very easy to voxelize

Objects however have to be voxelized via the hardware rasterizer, with a custom
pixel shader that we use to export a list of voxels, on each axis.

These are then sorted in a compute shader to ensure correct depth ordering.

This process is relatively expensive, and can be a bottleneck when a large amount of
objects suddenly enter our cascade.

In order to amortize some of this cost, we voxelize objects into 8x8x8 blocks, that are
stored in a simple cache, that covers an area slightly larger than our cascade.level

In this way we can voxelize objects that will be needed in the near future over a
number of frames, without causing any undue frame spikes.

RIIVEIZKRBAD D DT, RETAVIGAT O OMDHERI 24 XT

25

%o TSV I—PBMIGA T O IMIRIRLY,

FTNELRILDORIEIILTETRTORIEILIE, MY KREVMER A H-T.
ROESADTTBEEIZ, BARETUFIITIITIOVITEHENEET
T,

BB 128x128x32T UV A F¥IZvoxelized %, BIRERZEAT B, 16/5D
AAT5Z %,

=D HMBEIEL ANV —F T TRAFX1—TIZEOENTWET (RS —KREXEFD ,
LANY—FRTTREZ2—TIZIERTIVRTRRBRAN)ANESIRILDA . T
I MEHR) AHYET .

ZOEMTTRIESAXETHONEETY,

LHOULN—FKI7DSREZA Y EBLTHIDIMIRI A XENFET, %
3T BE=OIZRTIRIZRIEILD) ANEEEH T DICHREZLEVEIL T—
HEFHTULV =,

ELWNEEDIEFRZRIET =02, avEa— bt z—4TY/—FLET,
ZOTOERENEYRENEWN, ATV KEIZHAT—FRIZEMEN T
HAERMLAYIIZHS,

CHOARMDEBEEELT B=DIZ. ATz ORORIEIL Ty aAlZADTINS
ATz %, 8x8x8IZAR IS4 XLET . FAF-BDHRT—RKYDLEITKE
WIYTEES)
BIOL—LIZTLAV—DHE (L > TRELEEFEINDIEEIEX. ATV
Yo aFMBALTHEARABET . ZTOFTHETL—LRNNAIFRISHENKIIZT
=%,

25

G&ﬂ

Important to be a solid voxelization.

Fill spans between voxelized surfaces with
black opaque voxels.

. e | |, [EEEEEE
Propagate surface attributes to first inner layer mEREEE
of voxels. mEEE

BEEROERFV) YRR UL

oo |
BENTRBEBEARIEILERIEILEL-REOR mnms|
#1EH 5
RIEILDE—BREAY—TTARATM)Ea—F
e K B
2014/09/03 26

One thing that we found important for robustness was to ensure that the voxelization
was solid.

So as a post step after voxelization we fill spans between voxels with opaque black
voxels.

We also propagate our surface attributes inward to the first subsurface layer of voxels
to ensure we can’t trace past important information.

2DDATYTINHYET , FORIEILEAR—RGELTEEYDART,

RIFREDELD Y LTI T HRENRI LIV DEEERZITRNELSIC, REZE
{F %

RIEIEBDEIEELT, -BIEXFRERLG/N\VIRIVILERIEILEID R
INVEIRD D,

26

G,,,q,,,

Want to get multiple bounces of light propagated in
our cascades.

Also need to inject direct lighting from lights and
from the sky.

AR —RIZIEIRT 2D BHEID/ND U AZRFLIZL
Fl SAMORBEANLEERETIATILENDHD

2014/09/03 27

So, now we have the updated attribute data for our scene.

We need to inject lighting information and propagate bounce light within out voxel
data structure.

SHIBEI—2 DB, BFSNBET—2&H>TOET,

FBIE. SATATERETIAL. TIOMRIEILT—2EERIZ/INHI RN E
Gk T 2DELHYET,

27

Gﬁ;‘?m

For a given voxel + direction, a cone
trace to determine direct illumination,
and one for 1t or 2" bounce light, all
touch the same voxels, and
accumulate the same occlusion
information.

Just need to provide extra textures as
input to the cone trace,and return
multiple results.

Have to be careful about how we
accumulate to ensure we don’t get
feedback!

2014/09/03

Ezont=RovILEAM., BEEREAER
HHA—hL—R. 1, FEIXNEEHDOR
B . RCARIEILIZ DT T, FL
TRIERKFRDERE

A= bL—ZAADAAELTRRDHETY
AFrEiRHL. EHOREERTHE
nHs

FETLAE. T—E3—INATSA4UHEK
LW ZE, Ta—R w2 8L <Ay

28

Because of the look we were going for, we decided not use shadow maps, and to use

cone tracing for our direct lighting as well.

As our tracing directions are fixed, this means that for our surface voxels, the cones
we will trace for direct lighting , are the exact same cones we need to trace for

bounce lighting.

So we can fold everything into one cone trace for each of our 16 directions, and just
feed it with multiple input textures and get multiple results back.

We do have to be careful about how we organize this though, as we want a pipeline of
data flowing through the system, we don’t want feedback.

Fht=BIE. ORIy TEERLGWIEEREL, BEBHICO—UN—X%E

FRALTOYrOZEESD,

LD —RTHAMAIEEESNTOEY . GO TEERRBAIZFL—RT 53
—2 . EERBAISN—RT 2D EFEKELA—2THS

EHEEA ., BRI 2B D/NYU R (EF—D2Da—2 N—RATHN—TEET,
TILFTINDTIORFEZANTNIE. RIILFTILDOEREZEONET,

I=BIET—E—ATZAUDBRLND T . T4—F /Wy IIEERLLALY,
(LDDDINTURADH D TD NV RFREDITELTIEWNT LGN EAH D,

)

Go.

Occlusion cascade.

Input Light cascade— radiance from point
lights.

Direct Light cascade — all direct lighting at a
voxel on the last step.

Bounce Light cascade — Light that bounced
on the last step

TON—23 v hARy—K

SAMTOIRFMNEDARA - RAVSSA LD FESN
BEEXDHRAT—F - BREBEODRATYTLORIILIEE Direct Light
T, E#EH

FALINSA IR —F REODRTYT EORIEIL
IZHDBTRTOFEALINSAH
INDURFZAMART—F - REDRTYTDINIURS
A

2014/09/03 29

So, our cone trace, takes as input an occlusion cascade telling us which voxels are
occupied.

An input light cascade, which contains information about radiance from any point
lights we have in our scene.

A Direct Light cascade, which is the direct lighting we accumulated last time this
cascade was updated.

And a Bounce Light cascade, which is the first bounce indirect light that we
accumulated on our last update.

Note, there is no direct light added into the bounce light cascade otherwise we will
get feedback.

FON—230 F =AML TINT—RTT , FDAVTIRT—RIZEHT. ED
RIOEILAADTLWEIHIDNHIETEET,

FAMART—R DA Ty FEORAVISAEMOREICET HIERES
RAHET

FALINSAMNAR T —FDARBETY FAL ISR —RFRIBIDAR 7 —
FAEFENEEDEALINSATAVTDT—ETY,

INOURSAMNART—REBETT , NIV RSAMHRT—RIFEIRIO DR —R
NEHFINFEEDE—INIVRSATAVT DT—ETT,

INDVRFAMARYT—RIZ FALINSA T4V T DT—HF%EL, (HBE5T1—

29

KN I1ZlE>TLEST=8,)

29

C.c

Direct Light cascade

Bounce Light cascade

Bounce Bounce Light Cascade — Direct
Light + 1%t bounce light + 2"4 bounce
light + extra magic. Used by Screen
Space Cone Trace.

FALINSAMART—R
INDDORSAMNR T —F

INOUR NGV RSANNRT—R
Direct Light + 1st bounce light + 2nd

bounce light + extra magic. A1) —2 AN
—RXa—VhL—REFEA

Direct Light

2014/09/03 30

Once we have the results of our cone traces in the 16 directions from each voxel, we
can light each of its faces with the light we have gathered.

And spit out a new direct light and bounce light cascade,
as well as what I like to call the Bounce Bounce Light cascade,

which is the Final result texture containing our direct lighting, 2 bounce of indirect,
and a tiny bit of extra special magic, to give it an extra kick.

Ho=HT, Fh=bFZFAFADRIEIILICHLTIEABDIA—VL—RADHER
EEHOTVWET FBIEENENOEICZOLTERDSA T4 I N TES

=BT AL EREERER T,
2B DNV ADRE S ENSEI OV EEHS>T BMDNRZERFT=,

30

G,.Qm

fleat3 beunce diff = in (10.f*max (second bounce -

Two bounces at voxel granularity is good, o FIRARYEITO2RDRETZERLY
but would like more. R LB

Fake more by looking for places that

received more second bounce of light than - —EEB&LY. ZEIBORIGEEZT

first bounce, and boost them slightly. FEMERLT. ThoE LT —R
NSRS

bounce,0.f), second bounce*0.5f);

2014/09/03 31

Two bounces of light at our voxel granularity are nice, but we would like to have
even more.

So, we try to fake just a little bit more by looking for places that received more
second bounce light than first bounce light,

and surmising that they would probably get more illumination from a third bounce.
We add this extrapolated extra bounce to our final bounce bounce result.

FPRAR 2L TO2EIO R IERVLMERFEA, HoERLLEZLY

=D RFHEY . 2B B DRFEZT-HRZERL T, TDIGAIEEZH<3EE
DRHFNOZLDRAZFLD TIEFENZAHIH?

BRZEOLBET D,

31

G,.,‘?,.,

Propagate irradiance up our o HARAHF—KLARIJLDWBEIBEEZT7 VT

cascade levels. LIciET 5

Do this for all 3 irradiance . 390)?@?5‘7\3??\ 7:T_I'ET_]_~ N
textures, Direct, Bounce and AREINDURINY U RZATH

Bounce Bounce. s NMLDTIRAFYIL, FI=-BEHEE

$HE RYA—ILEITS
* RODHWRT—=RT7VTHoRELIZT

These textures will be scrolled to
as we move around.

o _ YUIRHRZER®GEI S
Missing edge info taken from next
cascade up.
2014/09/03 32

Finally we propagate the irradiance up the cascades with a compute shader.
We need to do this for all 3 irradiance textures that we have.

It’s also worth noting that we also have to scroll these textures as our cascades move
around.

With data that we don’t have at the edge of a cascade pulled from the next cascade
up, to give us a reasonable starting point.

BEIC.OVE1— b 243 —THRY—RZREZTYILT. 2OTOEARTS
T TDLARNILEESTULNS,

FALIE INDUR 2EBDINIVREVNIZDDTIRFY, ENENIZEDT
AEREERAT 5,

TLAY—DBERDIDBET DL TIRFYERIA—IILSEILENH S,
ART—RDITYOT—ENENEZL — D LDHRT—F T —2EHRARAAET

o

32

Gﬁ;‘?m

Final pass, handles *all* per pixel . BAEO/SRL. B EEEAELS. T

diffuse lighting, both direct and RTOESEILHT-Y DIk BIRE . QLI
indirect. EXS)

Trace at 1/4 dimensions, and « 167 DIO@EETAL—AL, BLTYTR
intelligently upscale. (16 directions r—IL9 5 (BU16AMT)

again) « RV)=UETRTCETITRT—)IL%ELE

MotFRARYEWGE . BHELIIK

Build d buffer of “fail case”
ulld up appen utrer ot T1all case A —R IEABILDTRUR NI 7EIE

pixels as we upscale, and use 542 di ;
ispatchindirect
dispatchIndirect() to do extra cone P 0
traces. .
. « EEREICEDSWT. F—RDBIRARYT—
Blend starting cascade for trace based KEJTLUKE 3
on distance.
2014/09/03 33

Now that we have updated the data that we have in our voxel cascades, we can now
go about starting to get this data into screen space.

Because we are dealing with very soft lighting, we can afford to cone trace at a much
lower resolution than 1080p

So, we use a ¥4 dimension buffer

and intelligently upscale it, fixing up any pixels that really need it as we go.

Again this is traced in the same 16 directions that we used to trace from the voxels,
And we output to a 16 layer deep, screen space texture array.

RIBCIART—RDORIZHDT—IDEF I TES =,
ROATITERD)—VZERIZ, COT—R%EFS2ETT,

SE., EBIZEONGRAZHR-O>TIVD, a—2—RDLAN)LIE 1080pLYHIE
SMEBENRBEEEZONZIFET,

FITADDINYI7HERT 3,

ARYCKLEBERHLPBIEIIILEZEELT, BKFYTRT—ILT 5,
A=V AR—ZADTIAF—IL16BZH >TLT. FNIZFINT VLT B,

33

Go.

2014/09/03 34

S0 you can begin to see what this looks like.
Here is our scene with just direct cone traced illumination.

BTW, a this point it’s probably worth noting that we project our sky into 16 SRBFs,
one for each direction we trace.

As you can see, this all gives us a very soft look to our shadows.

RBRITERELET,
CNIFEHEDOI—VN—RXBAOADIERTY,

F=-BARL—R T B HREFNFNIZ, 16 SRBFs GRE ST E ER %) I KBk Z 1%
295,

NEFR-EDEICERICBLLREEZEZAFT,

34

G,.Qm

2014/09/03

And you can see what starts happening as we add in the indirect lighting.
Here we have just one bouce.

MIERBADMRERLSIENTEET,
NIFEF1ODORE T,

35

WO BOT 0Q

G,.Qm

2014/09/03

And now two.

36

G,.Qm

2014/09/03

And three.

37

Gf.,qm

Cone Tracing is still slow with * 3I—~hL—RIE3DTIRFr7HR

r—R#&EFE>THEL

d o BB RI)—2VAR—ZADI—
Cascade. ZDT-H1Z103YF A D

10’s of ms for final screen o THORFYILYITITHIERIZZN
space traces.

even with a 3D texture

Way too many texture
lookups.

2014/09/03 38

So all of this works, but is still a little too slow.
So we have had to cut a few more corner to get to a workable speed.

NBDFTRTEENTLET A, FEDLEL,
ZCT . HRWGEEZFB-T=OIC, BEISVKOADATEETRENHOT=.

38

G,.g,,,

For each Cone Trace step, we must
interpolate between values from 3
voxel faces.

Weighting is determined by the
direction we trace.

ZA—U L —RRTFYTDE=HIZ, Fit=
LE3D2DRIIILENMSDIEXHBETH
WHWELHD

FL—RDAFBIZEST. EHAFITHIRE
Y (%)

2014/09/03 39

The first thing we do is note that because our voxels are anisotropic,

as we trace, we are constantly having to do an interpolation between the values of 3
face voxels.

This is quite costly in terms of the number of texture lookups.

F=HDRIEIVIEEA RGO T —RLGA L. SEDRIE/ILEZEIZER
HELTLS,

CNIE FIRFYILITYTDEO S TEZIZIRNETH D,

39

G,.Qm

r

S COMDINM e " ANTSOTTC

But our directions are fixed.

Pre-combine and store for each of
our 16 directions (in a
(16*32)x(6*32)x32 texture!)

1/3 the texture cost.] L] S L

LHL. B0 A RIZBEESN TS
16ARDNFNIZDONTFOREESLTE

FE1T5((16 *32) X (6*32)x32MDTH R x16
Frl)

30 DULTHVAFraARE

2014/09/03

40

But because we have fixed the directions we will trace, we can actually just pre-
combine these values for each of our 16 directions.

And store the whole thing in another texture.

There is a slight overhead for doing this, but it is relatively cheap, and it reduces the
number of texture lookups we need for the

Cone tracing steps by a factor of 3.

rL—XDAMIZETESN TS, EEIZIZI6 5RDFNFNIZDONT. Ch5D
EFZRIEAEHEDIENTEET,

ZLTHDTIRFYICTRTRET S,

NFITOIZIFIBF DA —/IN—~AIEBHYFET, LOLLEERMZME T, Faf=bIEa
—UPMEICATYTEMN—R T BE=OITREBELRTIORFVILYIT T DEE RS
JEMNTEEY,

40

Think of two cones traced in the same
direction that are close in world
space.

The samples we take as we trace each
cone will become increasingly similar
the further down the cone we get.

Far

This work is redundant.
D—I)LRAR—RXTRILAMIZFL—RE .
nTWada—2nm2oHhs54E ear V

FNFNOI—2EN—RTBREIZ. Y
DTNET—CDTFIZITKIFEEEAE AL
T5

CDEEXIRETY

2014/09/03 41

The second big optimization we make is simply to take advantage of parallax.
If we trace two cones in the same direction from a similar point in space,

the voxel data we access becomes increasingly similar as we move towards the far
end of the cones.

2EHORELGATTARAXEI VT IVICREZFAT HZETY,

22DaA—2IFENECHDIS, ALARIZFL—ALET , A—2 D&V AIZHE DL
E.TIEALTWARI I T—RIFEAEARILEIIZHLTEET,

41

Build another texture cascade with
the “far” cone data, for each of our 16
directions.

Per-pixel, only trace the “near” half of
the cone (using our pre-combined
cascade).

Far

Interpolate the “far” data from our

“far” texture, and combine. _—
16FEDELIHBHIA—VT—2EHEDTIATF Near V V

YHR5—KF%4k3%
EvtwILZEIc, a—UIEWERER—RT
5 (BHIRMELIE-HARAY—KE&ER)

BLDTIOAF NG, HEVD T —2ZHHREL.
HAEHED

2014/09/03 42

So instead of tracing this data repeatedly, we trace this “far” cone data once, from the
center of each voxel in a cascade,

And store this in another texture, which we can then trilinearly interpolate from in the
future, to reconstruct this data.

Then we only need to trace the “near” part of the cone, and use our texture for the
“far” part.

Where the “far” cone trace starts can be tuned for the best balance between quality
and speed.

Ehn,. BEICHDT—EFN —RATEEY, HDAT—FOFDTARTORIEILD
BEAomhs, m@WNT—2%—MEfE T —XT 5,

ZELTCEDT 3D 35— D2DTIORAFYIZREFENS, TVRAFYTRELI-T
— 3 V\DONBRT OIS A) =T AR — B ETY,

A—rDLECIDE R FEITEN —R T DRENH D, “ELVEDDI=DIZIFTTY
AFXEERTIDENHYFETS .

BOL—ZADEE—FBIDE D, V) TA—HARELGLELIZ, RE—FANk
ERoIZEETES,

42

G,.Qm

=) ~ [,s;‘

Cone tracing gives us a lot of large scale lighting detail
But our smallest voxels are only 0.4 meters.
Still need augment with fine detail computed in Screen Space.

=2 —RIEFAI=BIC REBRT—=IVIFATAV T DTAT—IVES5ZFET
LHL. COHBRTHESTERL/NESWDRIEILIEZTRIN0AA—FILTT
SHIZRYN) =D AR—RA THINETESN =T AT —IL &R T D2 ELH D

2014/09/03 43

Cone tracing is great, but our implementations smallest voxel size is only 0.4m, so
we need to augment this with extra detail computed in screen space.

OA—2hL—RIEEBSLLVDTIT A, b ORETIE., Z/IPORIEILHAX
[£0.4A—FILTT,

A=V ZAR—REFE N, BIMDTAT—ILCINEF#RT IDHENHYET,

43

Integrate 2 band SH, rather than a scalar occlusion value.

Easy to convert this into a visibility cone.

Intersect the visibility cone with cones for each of the directions we trace, and modulate the
incoming light accordingly.

See “Ambient Aperture Lighting” (Chris Oat) for Cone-Cone overlap approximation details.

AT —5—FH)L—230) 2a—TlEAL 2/ U RSHEEE LT
ECEYT4a—2%2/\URSHIZOV N—RF 5D I1E 5L
N—RARDFNEFNDIA—ERETHECE)Foa—2,
%hfﬂhb—xiéﬁrﬁl’e, ECEYTF—a—2%a—2THEYY., ZNIZIGCTASHE
R
O—2Ea—2 DA —IN—ZvTDEPUZ DN TIFTEHESBLTLEELY, “Ambient
Aperture Lighting” (Chris Oat)

2014/09/03 44

In order to do that need some screen space occlusion.

Note, that | left out the word ambient there,

We do something similar to Screen-Space Bent cones from GPU Gems 3
And integrate 2 band SH rather than a scalar occlusion value.

Which gets us a visibility cone at each pixel, that we can then intersect with the cones
from our 16 trace directions

Keeping this occlusion directional rather than just a single scalar value really helps,
especially when we deal with specular.

MBI DOIDRI) =V ZAR—ZFII—3 0 DI ETLES, TYEI UL
AN —2a0 EIFE ZTULVELY,

FAf-B 1. GPU Gems 3MBH AT —2U AR—AR U hO—U LRI EET B, &
LTRY—5—F9)IL—30 8 2—TlEiL 2/ U KSHEE L T-
LBEORIICES TN GEA—2DH D, TNTI6DRL—RARBOIA—2 (2 —/N
5‘770'3%)0

CORAEIBISIEE—DRAINT—IETIFLL BARBRDZEIERYIZFAE=-BI1.
EEEROBEIIEC. ®RILET,

SEDFAIN—23vE, —DDRT—5—DELYARIMENH = EIHNEFT
BB FICARF15—THATY,

44

Ga 2014/09/03 45
for it!

So, here is an example scene without screen space occlusion

AD) =D AR—=ZAF Y I—23> #2

45

Ga 2014/09/03 46
for it!

And now with, you can see what a big difference that makes.

A=V AR—RFHOIN—30 DBRERBTENHEFT,

46

Go.

—‘r‘ " : . r - " " l',; I
AT I A=)~

2014/09/03 47

As | said earlier Characters are not voxelized due to the size of our voxels,
And the extra overhead it would cause
But we still want nice soft shadows from them

BANNSN=ESI FYFTIE—EH A XDBETRIILIEENTOER A,

FNERDGEA—IN—A~AYFIZGS, LOLERIZODWERLD Y IR v RO ZE 4T+
T:L\o

47

__1'__‘ . — L L - N . [s
SN IS IIRT D)

Characters are not voxelized, due to size.

Would also cause extra voxelization overhead.

Use collision capsules, perform cone occlusion tests instead.

Similar to “Lighting Technology of Last of Us”, but in 16 directions, rather than just 1.
Fills a 16 deep screen space texture array.

F SV —E A XN RIS XTEENLGL

Fl. KL RIEIAEDF —"\—~VFDRRAIZES
Mbhylza)avBATEILE DN ST, A=A 2IL—2a0FARDO MDY IZT 3
“Last of Us" DA TA T EHMIZRTWET A, ThbolF1ARTIEGEL16 AR

16D TA—TRI) =V AR—RATFHRFv—TLAEBHFET

2014/09/03

48

So we use the characters collision volumes, to generate occlusion in a very similar
way to what was done in The Last of Us.

Except that we have to do a cone overlap test in each of our 16 cone tracing
directions, rather than just a single primary direction.

The result of this is a another 16 deep screen space texture array.

=B SR T7RA"TEONF-AERITENAIIL—230 %7518, v

S945—a)PavR)a—LEFENELT -,

ZNIFERDIARAEFTTEL FAEBDI6AROI——R A AL 3 012
L TCa—>A—N—SvTTFRARELEITNIEW T ST,

COFRIZFDIEDRI) =2 AR—RTHIRAFFERHIZ1: 5,

48

!

A =) L - 5 v [el
T T A=Y

Ga 2014/09/03 49
for it!

Here you can see the volumes we are using for the main character.

XT3V —DR)1—LHARZFET,

49

Go.

2014/09/03

As you can see, this helps the character feel much more rooted in the world.

HEDLIIFvIVF—MNEYITIVIZFERT DIIICRAET,

50

Go.

2014/09/03

51

I’ll just flick between those two so you can see it more easily.

51

Not easy to define with capsules.

Integrate visibility into 2 band SH and store in a 3D texture.
Easy to intersect again with cones in our 16 directions.
Apply to same screen space texture array as capsules.

A7 EILIZELTWVELIRDIEES
ECEUTAZ2/\URSHEIDDTIRFY—IZEZD

16D AMEICO—2EBURETLHDITHE

A7 EIVERLCRY) =V ZRET IR FrEIIIERINDS

2014/09/03 52

So that takes care of characters, but capsules are not a very good fit for some of the
other dynamic things we have in the game, namely Vehicles.

For these we instead build a 3D texture containing 2 bands of SH coefficients that
describe a visibility fn which we can then use to intersect with the cones from our 16
directions.

Again, this outputs to the same 16 deep texture array as the characters.

FEYMEORAKIZIFIHAT IV EEST=FVIIL—2av (EED TN

KHOYICESEY TABEBEF R LI=SHIR B D2\ R EEL3IDTIVRAFYE/ERL
9, TNITFAZFEDICARMLDIA—2 A —IN—5VTTEISIZFERTHIE
MTEFT

NnlE. FvS398—ER—D16TA—TTHORFEHIZHALET

52

Gf.,‘,’m

2014/09/03

53

So here you can see our bus, without an occlusions.

53

GO 2014/09/03 54
for it!

And now with.

54

YN 2N G 2N G === o

16 Cone Traces per pixel per particle — too expensive!

Use a simplified 2 band SH Cascaded Texture, like simple irradiance probes.
Tessellate, and sample per vertex.

Particles also fill Dynamic Occlusion texture.

Feeds into cone trace. Provides self occlusion and shadowing.

16 ARDA—2EL—REN—TAOIIBEHATITOIDEEMTE !

BT BEERED LB VT IVIE2INVRSHAR T — R TR FvEDMD
Tyt —a v ETERBEOY U T) T

IN—TADWNEBZAF VT FION—230 DT HORFYHIBRDD
FhEO—ML—RIZEZ D, BILITAIIIL—230 v RZRIET 5,

2014/09/03 55

So, we also have to deal with lighting transparent objects such as particles.

But the potential cost of doing 16 cone traces per pixel per particle, are just too
expensive to really be viable.

What we do instead (and this might be getting familiar to you now) is build another
texture!

While we are tracing our “far” cones, and storing that per voxel, we also actually
trace the “near” cone per voxel too,

And store the composited cone in another texture.

This gives us a texture where for any point in space we can query and get a rough
approximation of the incoming light in all 16 directions.

But 16 texture lookups is still way too expensive, so we then encode this texture as 2
band SH, which gets us down to just 3 texture lookups.

We then tessellate our particles, and sample from this texture per vertex.

EFIN—TAIILDESEEREMERESA T4 T ITRIGSEBIBELRH 1=,

LML S—T1IILDE S ILHTI=Y16a—2DEL—RETS-HDARMNEIET
5,

MERITOEDIERNDTIRFHEFEIETT , (CNIEAHLESADELTINSA

FELELWAELAEEA)

-BIENHENa—2F—AL. RIEILS EIZENESL—RT BB, KYR

55

S)gElzEDN ja—2 o N —ALET,

BN —REFWL—RIFESI—DDTIRFYIZRESNET,
HEADEED AT, FEIFTI6ARDAFHEE TIZKENLELFFSLHEMNH
kFEzT, CNITFZEIZTFIRFYEEZET,

LAL 16D TIRF IO TV E. FEHFYICEEMTT . 32DTIRTFY
WO T vTEBT. 221\ VRSHELTZDTIARFYEIO—KT B,
RIZ.TBRIEIZ. TORFADLIE=EDHF. BXUY VT ILETYEL—IT
A

55

G,.,?m

2014/09/03 56

We also have the particles fill a dynamic occlusion texture, which is fed back into the
cone tracing,

OA—2URL—RIZTL—R N\ IENT=I—TFT 4O IWNEEAFIVIXAIIL—230 T
X?'V%i'i I') O’Sij-o

56

And you can see how this allows things like smoke to have a volumetric feel
And a sense of presence.

RYa—AN) o BELSFIEICHEYEL -, FEBMNEHTULET,

57

Go.

e R RSy S 2T

To give a SS look we need to simulate
light that has bounced inside the

material.

Possible to work in texture space or

screen space and blur. _:5:_

Doesn’t necessarily deal with light | 4
bleeding from behind the object. N>
SSORI-BEZ5ZA5IZIE. ITUTILON

EIRA NI RT B ASL—ISBE Q

TIORFY—AR—RHLLFRY)—2 R
R—RETS—THET HKIIC
IO DEERNOINHAHERIFIE
LHESNGWRTRESEN H D

2014/09/03

The nice thing about having this SH texture is that we can use it for other things.
Typically Subsurface scattering is a difficult thing to simulate in realtime.

We need to simulate light entering an object at multiple different points, and
bouncing around inside the material before exiting at the point seen by the viewer.

One possible approach that has been tried is to blur the lighting information in either
texture space, or in a geometry aware way in screen space.

This works to some degree, but doesn’t help us that much with lights that are behind
the object.

So we have some chance of getting some good results for the red ray above, but not
the green one.

CDSHTIRAFr—D RUVLETIIMD REIZEEZDZETT,

BE. I —D1—RARAXv R T%#)T IVEALIZOZaL— T B EITH
M LETY,

KRN ANBERAVNTA I OMEoNTE=I T T ILICRE SN T, Ban
SHTLBENS T EE LI aL—R LA FNIELZSELY,

—DDFERFIATAVT T —REINT HENBHBYET . TVRAFYT—AR—ZR
TEMNT . HBIVERI) =V AR—IA TN HLEWESZENMNOTTA—
FHLTES,

KBRATOzORDERAL2HEFNIEZOF7TO—FIXOKTT,

58

ROFROKEOK, BOKFEEE LG ESNENTREEA D .

58

iy iy i g e ry VS A Sy

Go.

SH Texture for particle lighting can
quickly give us the irradiance at any

point.

Moving up cascade levels gives us the

average over a wider area. _:+:_ et Lhting for eurounding s
HFBEARADSHT IRAFCEEBDERT sanie v cosgane o> / ~e-
DG BEEEZHENTES o~

IN—TADIWSATAYT DSHT IR F ¥ G—r 1

—IREEDRTOREEZEZS
ART—RLANILDEITKIEFE . RED
T—2KY LB O T—20 NS

2014/09/03

(&)}
©

Thankfully the SH texture we built for particles gives us another way to tackle this
problem.

The texture we have build is effectively a light field for the scene that we can sample
at any point in space,

And can quickly give us the irradiance at any point we would like to sample.

Going up the cascade levels also gives us the information about the incident lighting
over a wider and wider region of space.

So we can simply take a weighted average of the irradiance from different cascade
levels, and use that to gather light that doesn’t directly hit our viewpoint.

In our implementation we sample over the whole sphere, effectively just taking the 1t
SH band, to accumulate this lighting, which we call the “static SS” shading.

EVGEIEIZ NN—T AU IV TESI=SHT VR Fv—IEFAF=B 12, SHIZR LT B F]
DAHEERELET,

BELTOWSOYIEHRMGZERADS A I1—ILE, ZRIROEE DG TY Y
TIVTFTBHIEN KD,

FARTA—ILR TREEDRAVTOY LTI TN TET. RAVEDREDT—
AHEETEES.

ZELTHRT—FLARILD LIZKIEE REDT—2KY, RSO T—52HVER
NFET, EWVSTET ART—RLRLIEN LR EDFHYHELZR>T, TLAY¥

59

—RRAICEEZOXOT—R2%EHENTEET,
COT7TA—FTE—SHN\UEDH . ZFHAL TR DT T RETAYISST—T 4
T THYET,

59

e A B Vo 2 4 T e b A

Gﬁ;‘?m

Also allows us to raymarch away from
the eye.

Gathering light falling on the back of

the object. Single Step Ray March

Change SSDO calc to provide screen Do
space thickness. Used to “frost” thin
objects.

TLAXY—RENSLATYFTHIEN g A)

TED
UL T SAMIHEHDRIZ LTS \
29—V =R DBEERES H10I<,

SSDONEHEEZEET S, "7ART1" Multiple SH Cones
DFT ST

2014/09/03 60

v
S8C

We can also give a directional effect by ray marching through the object away from
the viewer, sampling from different cascade levels as we go, gathering light using a
projected SH cone in the direction of the ray march.

But in order to take as few samples as possible we only take one raymarch step, and
take multiple samples from our cascade at this position,

Using progressively wider SH cones as we ascend our cascade levels.

This we call our “directional SS” term.

To get a rich range of material looks, we interpolate between the normal diffuse
lighting we get from our cone tracing, and these two sub surface lighting results.

In order to provide even more of a sub surface look, we also add a parameter for
“frosting”, which uses a screen space local thickness parameter we calculate along
with our SSDO to modulate the albedo of the material.

35—0DT7TO—FTTALI I FIIIIHNERRTEES, ThiklA~v—
FEITLANV—DEBIYVATOIIRDRI L3V hLEBLAENSIEHS I
HU)UGLET,
LAY—FDREILARDSHOA—U Mo DT—2ERM>TWET L. Yo7
IWEDLET B0, REMI—DDLAI—FRTYITDHEL. FDRII I3y
ML DDHUTIVERYET , AR —KRLARIILE EBNYLEASSHO—VIEEA
EALLELTWET,

ZDFTEALYL30SSENSTTAa—F,

60

WAARIRTYTILOR-BEERBT5-H. 3— N —ATHAEETAT1—
RSATAT EFAL IV DSSPRET49I5S%#HTLET,

KUYV T NG TH—Dz—ADR-BEERHRT 5=, JARTAUT ELNIINS
A—AR%BMLET , SSDOFEE LGNS, TJARTAUT MRAY)—V ZAR—ZRD
O—AILESINGA—2EFFAL T, ITUTILDTILAKR (KB D S % IR H = 5t
ITHENE)EERLFET,

60

Gf.,‘,’m

2014/09/03

61

So here you can see some slightly glossy mountains that are light with our vanilla
cone trace lighting.

TL—o5a— b —RBADKEDLAERDHHUERDZENTEET,

61

Gf.,‘,’m

2014/09/03

62

And you can see how we can turn on sub surface scattering and give these mountains
a nice waxy, semi translucent appearance.

BIH—TJ1—XRFyvR) T %FUIZL. oD IWUDRBET VI RIROH
BHDONEREEZ D ENTEINERDIENTEET,

62

2014/09/03

And then we can add the frosting effect to acccentuate the thin regions, and we start
to have something that looks quite believable.

ZL T FA=BIEEVEEE AR T H-OITTRRT VI HREEMT HIEMN
TET. KYITIVIGA NI HBHTLED,

63

GO 2014/09/03 64
forit!

If we take a look at this same material at night

I=BIEFRICCORLHMMERSDE

64

We can see more clearly how this SSS sampling scheme allows light to bleed through
the landscape.

COSSSHUT)UTARIE XNBEBRDFRITHENIENIDERDIIENTESE
ERS

65

G,.Qm

2014/09/03 66

Whilst I’'m showing you glowy things. | should probably add, its also very easy to
support emissive materials in our engine, as they fit very naturally into cone tracing.

We simply need to inject the radiance on the surface of the material into the voxel
grid, and we’re away.

O—Uh—RIZBRIZT4INT BEIIRATTITIVEERETHEIIHETL
1-.

ROELTVIROY—TT—RIFUT IHBEEAT BT,

66

Ga 2014/09/03
for it!

The simplified SH texture, is also very useful for other effects, like reflections.

EEIESNT=SHT VRAFv—IE . VILI2av D ESGMDMRIZELFEZFT,

67

Fast to build.
Uses Jump Flooding.

One for landscape and objects, and
one for dynamic lights.

Can be extended to work with Voxel
Cascades.

FZRIVEE

YT IN—TF1v T % EA
1IDEEASOAT oD =H . £50 &
DNIEFAFIVISA D5

RO IHRTr—R TEIMET B LS IZHEE
THIELTRE

2014/09/03 68

It’s very fast to build a Signed Distance Field for our cascades with Jump Flooding,
even though they are 3D.

We generate one for our landscape and objects, and one for our lights.

Once we have these they can be used to accelerate a ray march, through our voxel
data.

DNV TIN—TAVTEEZE AR TR DTAREZVRT1—ILREEET HD
FETEERITBILBRAFET,

SURRT—TFHIT O HME—D KEL—D,

ENEEBLEL, RO T—EE2BELAI—FOEENERRTED,

68

Ray march through these distance
fields.

Sample from SH cascades to
accumulate radiance.

Provides very rough view of the world.
But not dependent on screen space.

LAR—FIETAREAVRT4—ILREED
SHARG—ROoDHTYU T (X, 1EE
EH®ID
J—ILEDERICKENGE 2 —F iR
T35

LMLARSY—2 AR—R(ZIERFLARLY

2014/09/03 69

We can then sample from our SH cascade texture when we get close to a surface or a
light, and accumulate the results.

You can see from my picture here that this gives us a very course view of the world,
but it’s good enough for glossy specular reflections

And has the advantage that we can reflect objects even when they are off screen.

Y= —ZAOSAMMIEVEEIZIE, SHIRT—RTFIRFvh oo T)59 3%
CENHEFET . FLTHREEZERELET,

COEGZNMNREECDT—IILRE 2 —(FFEIZFTTTY, TFA. FAYI— X
RE15—JILILar REDRBIZIF+7TY,

YIL IR TSI IR A TR~ DEHZAT ST DREET B LD HE
%,

69

G,.Qm

2014/09/03 70

So in this scene with our burning town hall. We can see the reflection of the fire on
the floor, and if we look down...

CREREITH>TOBRITT . RICRSILTLBRANRAET L. ZLTTE
R

70

GO 2014/09/03
for it!

You can see that this still give us a nice, relatively sharp image of our surroundings,
Notice how we can see the fire and the hole in the roof, even when the are off screen.

ISR E D L RIEBAG A A—DFRBL TV ET,

KEDAMY PBRIRICENERABRYRAHAET . FITRI) =2 DA A—D1EDI
REHBRZTNS,

71

2014/09/03

And you can see all the detail we lose if I turn the effect off

MREADICLEGEICAINEDh =M NS TLLID

72

G,.Qm

2014/09/03 73

And of course, we can also extend this approach to allow us to have objects that
appear to exhibit glossy refraction.

Like these monuments.

TRyo—-)T7392a D&, AT IMNKRBD AIZ7TO—F 4R T 5
ENTEFT,

73

Go.

2014/09/03 74

So, it’s not all sunshine and light in our new voxel world.
There are a few issues that have caused us trouble.
One of them is sampling.

As you can see from the picture above, if we are not careful, then once our voxels get
large, significant sampling artifacts can start to show themselves.

==L FILWVR LT — LR EECICTTERERIA DL HAHDITTIEHY
FA,

FSTILERILTORE DN OBEABYET , VEDIEH LTI TT,

K[EMFLEVNERI BN KRELGBIEE YTV T DI T THAETEE
ERS

74

Typically bias Cone Tracing away from the surface by ~0.5 a voxel to avoid
self occlusion.

Still face subtle aliasing issues on planar and smoothly curving surfaces.
Abuse SSDO again, to get a screen space metric for curvature.
Increase bias in low curvature areas.

BEN\ATRAO—2IE REHS~05RIEILTEILIFZIL—a 8 TH=8(2,
BN TS

TEREOMEIA)TIT DEEL, ALL—XIZERLE-Y—Jz/ RE@ENH S
FEDIZHDAD) =D AR—REFHT=HIZ, BUSSDOZEEEFET S
EHEDEEORYEE T

2014/09/03 75

Typically we’ve been solving this by biasing our cone trace so that it starts half a
voxel away from the surface of our object.

This works well enough in a lot of cases, but fails in cases like the giant head where
we have planar or very smoothly curving surfaces.

Our solution to this has been to do something similar to what we did for the frosting
in for the SSS, and add another output to our SSDO, this time one that

Gives us a measure of curvature, both concave and convex.

With this we can choose to bias the cone trace out further in low curvature areas,
whilst still retaining the detail we want when we have complex objects.

YT FIZ KB EERIB T =02, a— L —RIZ. NATREET A
TOzOMDEREMNSERILILDEEEZRAS— B EIZLTWET,
NTIEREAEDT—ADNERLET A, BESHASERLEDIZEE T, £TH
AL—RXBLEWVBENHIIGEICEFEEFEHELIHYET,
TIDT.5—DDERAZIE. RIFEBLLEITFEESICTIARTAUTSSD LS
H77O0—FTSSDOIZE5—D DTN T VRERT ZETT,

COT7ORNT UM, HEOMEDMENFETEET . COFEDFERICE DL
T HEWA—TDEZIZTaO—2 ML —RANATRADEHELEEL T, KYEHLAD
DN GRAIAHTEET,

75

@hl i

2014/09/03

76

So this is the sort of output we get from our screen space curvature.

NEFAEDRD) =V AR—RDHENHFLNET INTIFDEIGEHDTYT

o

76

G,.Qm

2014/09/03

]
~l

And you can see that this has a dramatic effect on the alias issues that we were
seeing.

CNEFFREAR TN T 7O U MEICRIGHREF TSI enhny
E3

77

Only have 6 levels of cascade.

Want to trace cones further than we have data for (our landscape objects are huge!).
A Clipmap doesn’t fit naturally with our texture addressing.

Data tends to propagate up mipmaps faster than our cone trace ascends them.

The top MIP voxel (nearly) always ends up semi opaque. Not good for direct lighting.

Ft=BIE6L RNILDART—F LM > TULVELY
FL—RLIzWVA—2DEESNT —LOT—43% LEIS(FAI-E DB IEETEER)).
) TIuTNE. TORFYTRLYL T 1B RIZT70v kLA

=D —2 b —RIEFENON LR TEHLVEEEYT IV T HERET HIERLHS
by IMIPRIEILIZEIZERBERATH D, CNIZEZEBEADI=HIZKAEL

2014/09/03 78

The other problem we have hit, is that our we only have 6 levels for our cascades,

but we want to potentially trace for quite large distances, requiring our cones to get
even wider than we have data for, as some of our objects are huge.

We could use a Clipmap, but it doesn’t fit in very naturally with out texture
addressing scheme.

We could also add more cascade levels which is a more natural fix, but both this idea
and the clipmap idea suffer from some very similar issues.

Because we filter our data in 3 dimensions when we generate mipmaps,

Occlusion data from courser levels has a tendency to travel up our cascades faster
than our cone trace actually ascends them.

This manifests itself as the problem that typically, the top MIP of our voxel chain is
always semi opaque, which means that we always end up occluded

This is not a very good situation for direct lighting.

DL —DDEREK. WRAT—FD6DDLANILLMENIETT,

LT —LDFRDHEF TP IMIEKRLGH A X THY . ROLEHEIN —X
L&EDETHETA—VDEEN T —LDRET—4% LESZKESIZHYET,

)Ty TE=FRT B LR TEFIN. ¥ —LDRIZHAITIRAFY—TRL R
F77O—FIZIEHFEY KLTavbLELY,

E2—DDFERAZEIE. 6 DKYBWVART—FLANLERTIE =1L, Thiy

78

)Ty T ERLT7TA—FDOREHBHYET,
F—LT—3—E3RITTIAINEZINTVES , ZLTIVIT IV TEERLESE
L5 E . BLLEDR T =R AR TRI LT DS SIS VI —D30T—
APNHRT—FRIZERTHEEN . - —RDREE LY BOEWSEBEIFE
ELFEYS

ZIEBERI L FI—DREDIVT NFBEATTDTHRELT. ZDHK
MIELEYLLGWEFRTHAT Y,

EholZ, BERRBRALLTHFEYSEDTERNVTIO—FTHS,

78

Currently we just clamp to the top
cascade level.

Not an ideal solution.
Causes Undersampling.

Sometimes visible on shadows of large
objects.

BRTIEbYTDHRT—RLRIELS T
LTL3

BB RRRETEG N
FoR—=H TG &5|ERIT
BERLGATOzOMDFEGE TIEE

2014/09/03

Level 5

Level) ——»

Our current, workaround for this, issue is to trace a big cone, but to just clamp our
texture sampling to top out at the top level of our cascade data.

This somewhat solves the “always semiopaque” issue, but has the unfortunate effect
of turning our cone into a cylinder in the distance, and leaves us with undersampling.

This becomes apparent on some of our shadows in a few places.

TIOT.IREFHALTWAERAXRF, KEHA—2 N —RETBHIETY L 1=
L. TIORF—H T IEHRT— R T —ADENLARIILTRTSEET,
NIEFABHEORBEERLETA., BESLALO—2DENECAIKENST(Z
DB —RRIZH B FERIIT A —H U TIVEBE T,

AfEZRABLEECAECACNAHMNYET,

79

G,.Qm

Extra cascade levels

Similar to Clipmap, but voxel —
resolution stays the same (Not a MIP) z

Prefilter our precombined direction - =
voxels in the plane perpendicular to T T T
the direction?
IHRANSHART—KLARNJL
STy T IRV, RO ILDEE
EIE(MPTIFELRELCEE
16AMCEITa—VAREEET HHM

IS EEL AR —RETALALE —
iz .

2014/09/03 80

What we’ve been thinking about doing to solve this is to add the extra cascade levels
But keep the resolution of those new cascades the same as our current top level,

And filter each of our precombined cascades for each of our 16 directions in the
plane perpendicular to their direction.

A number of extra cascade levels produced like this should hopefully allow us to
keep our cone trace, a cone trace, but avoid the “always semi opaque” problem, we
hope!

TY DT, ZBRHBHRRAEZEZEZFEL T HRT—RLALERTLIMVENEE
ATWS,

LRI HRT—RUANILOBRBERFREDM TUNILOFEGEELRERICLE
ERS

16 ARCEICa—VAREEETAAMICERICEMKLIZART—FEI4ILELE
ERR

INTIA—VEL—RADFEET, FERABEZMRRT DD TIEELD,

80

~3ms to update our cascades (only one level done a frame), more if we have to voxelize.
~3ms to do our screen space cone tracing

~3.5ms for specular ray march.
~2.5ms to do our final upscale, and combination with our various occlusion textures.
600mb+ of textures for voxel data and the like.

~3ms ART—RFDT7vTT—HMIEMI BB (TL—LIZ—DDLAL) RIEF14XL
HITIEESEWNES

~3ms AZ—2UAR—ZAOaA—2rL—RIZHE N BERR

~3.5ms AR AS5—DLAIYFUT(ZH M HER

~2.5ms RIEMLET VT RT—ILEKRRIEF VI —2a0 THOAFo—DEAFEHEIZ#H M
Y i=di

600mb+ RIEILT—FRFNIZEHTEITIRAFVYE=E

2014/09/03 81

Just a few quick words before | wrap up about how expensive this all is.

It’s generally taking us on the order of about 3ms a frame to update our cascades,
slightly more if we have to voxelize.

Our screen space cone tracing takes somewhere on the order of 3ms.
3.5 ms for the specular ray march,

and 2.5ms to do our final upscale and combine pass, that takes all the various
elements, including SSDO and occlusion, and spits out a shaded pixel.

And of course, as you could probably guess from my repeated mention of the word
“texture” we use a rather large amount of memory for textures,

currently somewhere north of 600mb.

%?&'::ZF(:OL\T_E\ EL\T:L\tIEEL\as-d_o

BEIL—LNKEIMST EITHRT—RET YT T—rEN RIS S5 LY
UKL DD

A9) =2 AR—ZO— L—RE3Msh MY ET,
ARFX 15— AT—FHM3.5ms
FLT. BEBEODT7YTRY—ILEBIRT H/8RHY2.5ms

FNMRTRTSSDOXLA VI —23 AR T—DODEHEFHEIRILET TR Ty
MLET,

81

ZLTEIAIEZ S “Texture’ DEEMNGEBL TS ESBLLVETH. TIRFY
ADOAEYELTHEYRELGREZFEO>TLET . §DEZAIE600mb.

81

G,.,‘?,.,

L ASYACCOMPTT

Most of our Screen Space (and Voxel Space) shaders have been moved to
Compute.

Frame is pipelined. Post processing overlaps Gbuffer fill for the next frame.
Massive win compared to just graphics pipe.

~5ms back on a 33ms frame from using Async Compute.

Everyone should do this!

AD)—=2 AR—=A(BEURIEILAR—R) x—FDIFEAE X OV 12—t —&ZFLI-

TL—LMBENRATSAT B, RANTOERERDIL—LEGINYITFDIAILDELSD
GPUEY 74O T2IT T B RABIEITESDAHRMN

AsyncaE 2—hrMD33mshHHI5msiR (5

BEAChEENELLD !

2014/09/03

82

One thing I would like to mention before I finish is about our use of Async Compute.

We’ve used it very heavily throughout the project, and most of our Screen Space (or
\oxel Space) work is in compute shaders,

with large amounts of that running on 3 async compute queues that we have set up in
addition to our graphics context.

On a heavy scene we get back around 5ms on a 33ms frame from using Async
Compute.

AsyncaVEa—MIDWTELIZWIEAHYET,
ZDTACIHRTCRLE>TLVELT,

FEAEDRI)=V AR—=R, HBENEIRIEIILAR—RADEEFarE1—+
I—5EMALTEEDT 709908 &YAsyncaE 1 —+E3 DD 175 THEAI
[ZERELELT=,

AsyncaVEa—rDEMNF T HGHIIZE VD —22512533msDIL—LkY.,
S5ms/\wIEINET,

82

TR W i] [1

ASYACTCOMPUTE

Graphics Pipe: ~ 33ms

LN DR LN)

Async Compute: ~ 27ms

Gf.,?m

2014/09/03 83

Here isa RTTV capture of the same, fairly heavy frame.
On the top we’re using just the graphics pipe.
On the bottom we’re using Async Compute.

As you can see on the bottom, everything is a lot more overlapped, and we take about
5 or 6ms less.

This is with exactly the same shaders, doing exactly the same work.

So, anyway, if you aren’t looking at using Async Compute on PS4 yet, YOU
SHOULD!

SHEBESHEHEL. REXROLSRAEOR EER T, AL
L—LT

L OEBICTIET ZT7499 R A TEFERALTVET,
T OE & TIXAsync ComputeZFEALTLVET,

TOEBRTREADLKESIZ RILUDA—N—FvThHY ., FZTsmsEIELTLE
ER

NFFEKELHEFZL T, FolKRAL -5 THS,

F12PS4TAsyncaAVEa—rEFEALTLRLD THNIE, EITHhL CDILEHE
ALTFEEN

83

G,.,‘?,.,

Higher Frequency Shadows. . SREEDOIYEY

— Possibly Voxel Soft Shadows. - HENIEFRIEILY TR YRS E
Higher Resolution Grid. . BEfREEOT)VR

— Investigate using a brick map. ~-TYwhHT T DHNBEEFFHARD
Bounce from Characters. o XVSHAMLDSALDINYIUR

— Some form of limited injection. SREINF-A2TTHah D
Improve Material Model. . ITFYTILETILOKE

— Currently not very physically ~IHE (T2 LU

correct.
2014/09/03 84

I’ll just quickly wrap up with the things we want to fix in the future

Firstly we’d like to be able to support higher frequency shadows.
We have been able to get away without them for this game,

But if you wanted to make a game with a more normal look, then you’d probably
want them

We don’t think that adding RSMs would be a particularly difficult thing to do in our
engine in the future,

but we’d really like to experiment with generating a more accurate distance field and
using a tight cone trace to create soft voxel shadows

Obviously we’d like to improve the resolution of our voxel grid, possibly by

Using bricks, which would increase our complexity slightly, but probably still be
preferable to switching to an Octree.

We’d also like to get some bounce from characters and vehicles in there, possibly via
some limited form of injection, or perhaps by doing it in screen space.

And finally, we’d really like to improve our material model, as whilst we are energy
conserving in the cone tracing, our specular model is currently far from physically
correct.

84

REICHERLE-WLWHZFREISHRBALET,

B EREDI YR IEYR— IO TEA - SEDOT —LIFENE
FEOTITRITUNHIEAHFEFELT -,

LWL, ALESADRKYBEDED AT ILTT —LEEYLOTHNIE. P vE™
[FHEITIEDHTLED,

FBRDIOCUTHNIE, RAMEEBINT BIZHLLILZLESS,
FEFXVIMNRIEIIDEEZLER T B-DIZE2AMNEO—2 L—REDHY, KU
EHEETARIVRITL—ILREERTHEFHRLTHI=LY,

RIEILT) IR DRBELT7 YT L=, — DDA EIEBlicksEFESZETIT A,
PDLERICHYET M, A= V)—KUFELMELNELY,

FLT. X v5949— £ TEEANYUREBMLI-WWERSTOVET,
TTUFILETILERELEWLTT , O—V—RIZIRILF—EFIEVSEIEH
BOTTM, BHDRARX1S—FETIVEBSLGNAOYIBMICEREGRINTE
TWEWESATH S,

84

Gf.,‘,’m

.

\ThankyouI

u/ﬁﬂﬁl’).@\t') ‘ L\i’d'

‘;“

e -

2014/09/03 85

Special thanks to Tao Yung, who implement our particles and refractive objects.

SCEJ for being willing to let us go in our various crazy directions and for supporting
us,

Yoshida san for helping me to be able to give this presentation
And the rest of the awesome team back at Q.

IN—TAINE) TS T4T DEEZFLI-Tao,
ZTaTIMIFEYBLOEH L, ZLTHR—FL TN =SCEID A &
1BAHAQ-gamesD RAAYIDH R IZEREFLFET,

B ARZEDERAILQ-gamesTRAD A TAL Y A—%ELTL\SFh., TEHMITLVELT

HYMESITETNEFET,

85

Go.

recruit@o

[=

2014/09/03

B A R

rT A
AE S) 70 STVl i C

gar

A

O-Games

86

Any Questions?

86

